ﻻ يوجد ملخص باللغة العربية
We give a new proof of a recent resolution by Michelen and Sahasrabudhe of a conjecture of Shepp and Vanderbei that the moduli of roots of Gaussian Kac polynomials of degree $n$, centered at $1$ and rescaled by $n^2$, should form a Poisson point process. We use this new approach to verify a conjecture of Michelen and Sahasrabudhe that the Poisson statistics are in fact universal.
We consider random polynomials whose coefficients are independent and uniform on {-1,1}. We prove that the probability that such a polynomial of degree n has a double root is o(n^{-2}) when n+1 is not divisible by 4 and asymptotic to $frac{8sqrt{3}}{
Continuous Time Markov Chains, Hawkes processes and many other interesting processes can be described as solution of stochastic differential equations driven by Poisson measures. Previous works, using the Steins method, give the convergence rate of a
Let $O(2n+ell)$ be the group of orthogonal matrices of size $left(2n+ellright)times left(2n+ellright)$ equipped with the probability distribution given by normalized Haar measure. We study the probability begin{equation*} p_{2n}^{left(ellright)} = ma
We analyze different measures for the backward error of a set of numerical approximations for the roots of a polynomial. We focus mainly on the element-wise mixed backward error introduced by Mastronardi and Van Dooren, and the tropical backward erro
We give a cohomological interpretation of both the Kac polynomial and the refined Donaldson-Thomas- invariants of quivers. This interpretation yields a proof of a conjecture of Kac from 1982 and gives a new perspective on recent work of Kontsevich-So