ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral and timing evolution of MAXI J1631-479 during the 2018-19 outburst with NICER

91   0   0.0 ( 0 )
 نشر من قبل Sandeep Rout
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sandeep K. Rout




اسأل ChatGPT حول البحث

The X-ray transient MAXI J1631-479 went into outburst on 2018 December 21 and remained active for about seven months. Owing to various constraints it was monitored by NICER only during the decay phase of the outburst for about four months. The NICER observations were primarily in the soft state with a brief excursion to the hard intermediate state. While the soft state spectrum was dominated by thermal disk emission, the hard intermediate state spectrum had maximum contribution from the thermal Comptonization. Almost all intermediate-state power spectra had a Type-C low frequency quasi-periodic oscillation (within 4 - 10 Hz), often accompanied by a harmonic component. The frequency of these oscillations increased and the fractional rms decreased with inner-disk temperature suggesting a geometric origin. One observation in the middle of the outburst during the hard intermediate state had two non-harmonically related peaks. While one of them was definitely a Type-C QPO, the identification of the other one is uncertain. The rms spectra during the intermediate state had a hard shape from above 1 keV. Below 1 keV the shape could not be constrained in most cases, while only a few observations showed a rise in amplitude.

قيم البحث

اقرأ أيضاً

We report on a recent bright outburst from the new X-ray binary transient MAXI J1631-479, observed in January 2019. In particular, we present the 30-200 keV analysis of spectral transitions observed with INTEGRAL/IBIS during its Galactic Plane monito ring program. In the MAXI and BAT monitoring period, we observed two different spectral transitions between the high/soft and low/hard states. The INTEGRAL spectrum from data taken soon before the second transition, is best described by a Comptonised thermal component with an electron temperature of 30 keV and a high luminosity value of 3x10^38 erg/s in 2-200 keV energy range (assuming a distance of 8 kpc). During the second transition, the source shows a hard, power-law spectrum. The lack of high energy cut-off indicates that the hard X-ray spectrum from MAXI J1631-479 is due to a non-thermal emission. Inverse Compton scattering of soft X-ray photons from a non-thermal or hybrid thermal/non-thermal electron distribution can explain the observed X-ray spectrum although a contribution to the hard X-ray emission from a jet cannot be determined at this stage. The outburst evolution in the hardness-intensity diagram, the spectral characteristics and the rise and decay times of the outburst are suggesting this system is a black hole candidate.
75 - K. Alabarta 2020
We present a detailed X-ray spectral and variability study of the full 2018 outburst of MAXI J1727-203 using NICER observations. The outburst lasted approximately four months. Spectral modelling in the 0.3-10 keV band shows the presence of both a sof t thermal and a hard Comptonised component. The analysis of these components shows that MAXI J1727-203 evolved through the soft, intermediate and hard spectral states during the outburst. We find that the soft (disc) component was detected throughout almost the entire outburst, with temperatures ranging from ~0.4 keV, at the moment of maximum luminosity, to ~0.1 keV near the end of the outburst. The power spectrum in the hard and intermediate states shows broadband noise up to 20 Hz, with no evidence of quasi-periodic oscillations. We also study the rms spectra of the broadband noise at 0.3-10 keV of this source. We find that the fractional rms increases with energy in most of the outburst except during the hard state, where the fractional rms remains approximately constant with energy. We also find that, below 3 keV, the fractional rms follows the same trend generally observed at energies >3 keV, a behaviour known from previous studies of black holes and neutron stars. The spectral and timing evolution of MAXI J1727-203, as parametrised by the hardness-intensity, hardness-rms, and rms-intensity diagrams, suggest that the system hosts a black hole, although we could not rule out a neutron star.
143 - M.M. Serim 2021
We investigate timing and spectral characteristics of the transient X-ray pulsar 2S 1417$-$624 during its 2018 outburst with emph{NICER} follow up observations. We describe the spectra with high-energy cut-off and partial covering fraction absortion (PCFA) model and present flux-dependent spectral changes of the source during the 2018 outburst. Utilizing the correlation-mode switching of the spectral model parameters, we confirm the previously reported sub-critical to critical regime transitions and we argue that secondary transition from the gas-dominated to the radiation pressure-dominated disc do not lead to significant spectral changes below 12 keV. Using the existing accretion theories, we model the spin frequency evolution of 2S 1417$-$624 and investigate the noise processes of a transient X-ray pulsar for the first time using both polynomial and luminosity-dependent models for the spin frequency evolution. For the first model, the power density spectrum of the torque fluctuations indicate that the source exhibits red noise component ($Gamma sim -2$) within the timescales of outburst duration which is typical for disc-fed systems. On the other hand, the noise spectrum tends to be white on longer timescales with high timing noise level that indicates an ongoing accretion process in between outburst episodes. For the second model, most of the red noise component is eliminated and the noise spectrum is found to be consistent with a white noise structure observed in wind-fed systems.
We study transient Galatic black hole candidate MAXI~J1836-194 during its 2011 outburst using RXTE/PCA archival data. 2.5-25~keV spectra are fitted with Two Component Advective Flow (TCAF) model fits file as an additive table local model in XSPEC. Fr om TCAF model spectral fits, physical parameters such as Keplerian disk rate, sub-Keplerian halo rate, shock location and compression ratio are extracted directly for better understanding of accretion processes around the BHC during this outburst. Low frequency quasi-periodic oscillation (QPO) are observed sporadically during the entire epoch of the outburst, with a general trend of increasing frequency during rising and decreasing frequency during declining phases of the outburst, as in other transient BHCs. The nature of the variation of the accretion rate ratio (ratio of halo and disk rates) and QPOs (if observed), allows us to properly classify entire epoch of the outburst into following two spectral state, such as hard (HS), hard-intermediate (HIMS). These states are observed in the sequence of HS (Ris.) $rightarrow$ HIMS (Ris.) $rightarrow$ HIMS (Dec.) $rightarrow$ HS (Dec.). This outburst of MAXI~J1836-194 could be termed as `failed outburst, since no observation of soft (SS) and soft-intermediate (SIMS) spectral state are found during the entire outburst.
We present the observational results from a detailed timing analysis of the black hole candidate Swift J1658.2-4242 during its 2018 outburst with the observations of Hard X-ray Modulation Telescope (Insight-HXMT), Neutron Star Interior Composition Ex plorer (NICER) and AstroSat in 0.1-250keV. The evolution of intensity, hardness and integrated fractional root mean square (rms) observed by Insight-HXMT and NICER are presented in this paper. Type-C quasi-periodic oscillations (QPOs) observed by NICER (0.8-3.5Hz) and Insight-HXMT (1-1.6Hz) are also reported in this work. The features of the QPOs are analysed with an energy range of 0.5-50keV. The relations between QPO frequency and other characteristics such as intensity, hardness and QPO rms are carefully studied. The timing and spectral properties indicate that Swift J1658.2-4242 is a black hole binary system. Besides, the rms spectra of the source calculated from the simultaneous observation of Insight-HXMT, NICER and AstroSat support the Lense-Thirring origin of the QPOs. The relation between QPO phase lag and the centroid frequency of Swift J1658.2-4242 reveals a near zero constant when < 4Hz and a soft phase lag at 6.68 Hz. This independence follows the same trend as the high inclination galactic black hole binaries such as MAXI J1659-152.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا