ﻻ يوجد ملخص باللغة العربية
We demonstrate direct transport between two opposing sets of Yu-Shiba-Rusinov (YSR) subgap states realized in a double quantum dot. This sub-gap transport relies on intrinsic quasiparticle relaxation, but the tunability of the device allows us to explore also an additional relaxation mechanism based on charge transferring Andreev reflections. The transition between these two relaxation regimes is identified in the experiment as a marked gate-induced stepwise change in conductance. We present a transport calculation, including YSR bound states and multiple Andreev reflections alongside with quasiparticle relaxation, due to a weak tunnel coupling to a nearby normal metal, and obtain excellent agreement with the data.
Dynamical processes induced by the external time-dependent fields can provide valuable insight into the characteristic energy scales of a given physical system. We investigate them here in a nanoscopic heterostructure, consisting of the double quantu
Qubits based on the singlet (S) and the triplet (T0, T+) states in double quantum dots have been demonstrated in separate experiments. It has been recently proposed theoretically that under certain conditions a quantum interference could occur from t
We analyze the transport properties of a double quantum dot device with both dots coupled to perfect conducting leads and to a finite chain of N non-interacting sites connecting both of them. The inter-dot chain strongly influences the transport acro
We study the transient phenomena appearing in a subgap region of the double quantum dot coupled in series between the superconducting and normal metallic leads, focusing on the development of the superconducting proximity effect. For the uncorrelated
We study a graphene double quantum dot in different coupling regimes. Despite the strong capacitive coupling between the dots, the tunnel coupling is below the experimental resolution. We observe additional structures inside the finite-bias triangles