ﻻ يوجد ملخص باللغة العربية
We investigate whether successful Gravitational Leptogenesis can take place during an Ekpyrotic contraction phase. Two possible paths by which this can occur are coupling the Ekpyrotic scalar to a gravitational Chern-Simons term, or to a $ U(1) $ gauge field Chern-Simons term. These couplings lead to the production of chiral gravitational waves, which generate a lepton number asymmetry through the gravitational-lepton number anomaly. This lepton asymmetry is subsequently reprocessed by equilibrium sphaleron processes to produce a baryon asymmetry. We find successful Gravitational Leptogenesis to be possible in Ekpyrotic bounce cosmologies through both of these mechanisms.
Radiatively-induced gravitational leptogenesis is a potential mechanism to explain the observed matter-antimatter asymmetry of the universe. Gravitational tidal effects at the quantum loop level modify the dynamics of the leptons in curved spacetime
An oscillating universe cycles through a series of expansions and contractions. We propose a model in which ``phantom energy with $p < -rho$ grows rapidly and dominates the late-time expanding phase. The universes energy density is so large that the
We explore the possibility of an Ekpyrotic contraction phase harbouring a mechanism for Baryogenesis. A Chern-Simons coupling between the fast-rolling Ekpyrotic scalar and the Standard Model Hypercharge gauge field enables the generation of a non-zer
We show that the f(T) gravitational paradigm, in which gravity is described by an arbitrary function of the torsion scalar, can provide a mechanism for realizing bouncing cosmologies, thereby avoiding the Big Bang singularity. After constructing the
We propose a scenario of spontaneous leptogenesis in Higgs inflation with help from two additional operators: the Weinberg operator (Dim 5) and the derivative coupling of the Higgs field and the current of lepton number (Dim 6). The former is respons