ترغب بنشر مسار تعليمي؟ اضغط هنا

Causal Intervention for Leveraging Popularity Bias in Recommendation

122   0   0.0 ( 0 )
 نشر من قبل Yang Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recommender system usually faces popularity bias issues: from the data perspective, items exhibit uneven (long-tail) distribution on the interaction frequency; from the method perspective, collaborative filtering methods are prone to amplify the bias by over-recommending popular items. It is undoubtedly critical to consider popularity bias in recommender systems, and existing work mainly eliminates the bias effect. However, we argue that not all biases in the data are bad -- some items demonstrate higher popularity because of their better intrinsic quality. Blindly pursuing unbiased learning may remove the beneficial patterns in the data, degrading the recommendation accuracy and user satisfaction. This work studies an unexplored problem in recommendation -- how to leverage popularity bias to improve the recommendation accuracy. The key lies in two aspects: how to remove the bad impact of popularity bias during training, and how to inject the desired popularity bias in the inference stage that generates top-K recommendations. This questions the causal mechanism of the recommendation generation process. Along this line, we find that item popularity plays the role of confounder between the exposed items and the observed interactions, causing the bad effect of bias amplification. To achieve our goal, we propose a new training and inference paradigm for recommendation named Popularity-bias Deconfounding and Adjusting (PDA). It removes the confounding popularity bias in model training and adjusts the recommendation score with desired popularity bias via causal intervention. We demonstrate the new paradigm on latent factor model and perform extensive experiments on three real-world datasets. Empirical studies validate that the deconfounded training is helpful to discover user real interests and the inference adjustment with popularity bias could further improve the recommendation accuracy.



قيم البحث

اقرأ أيضاً

Recommender system usually suffers from severe popularity bias -- the collected interaction data usually exhibits quite imbalanced or even long-tailed distribution over items. Such skewed distribution may result from the users conformity to the group , which deviates from reflecting users true preference. Existing efforts for tackling this issue mainly focus on completely eliminating popularity bias. However, we argue that not all popularity bias is evil. Popularity bias not only results from conformity but also item quality, which is usually ignored by existing methods. Some items exhibit higher popularity as they have intrinsic better property. Blindly removing the popularity bias would lose such important signal, and further deteriorate model performance. To sufficiently exploit such important information for recommendation, it is essential to disentangle the benign popularity bias caused by item quality from the harmful popularity bias caused by conformity. Although important, it is quite challenging as we lack an explicit signal to differentiate the two factors of popularity bias. In this paper, we propose to leverage temporal information as the two factors exhibit quite different patterns along the time: item quality revealing item inherent property is stable and static while conformity that depends on items recent clicks is highly time-sensitive. Correspondingly, we further propose a novel Time-aware DisEntangled framework (TIDE), where a click is generated from three components namely the static item quality, the dynamic conformity effect, as well as the user-item matching score returned by any recommendation model. Lastly, we conduct interventional inference such that the recommendation can benefit from the benign popularity bias while circumvent the harmful one. Extensive experiments on three real-world datasets demonstrated the effectiveness of TIDE.
Many state-of-the-art recommendation systems leverage explicit item reviews posted by users by considering their usefulness in representing the users preferences and describing the items attributes. These posted reviews may have various associated pr operties, such as their length, their age since they were posted, or their item rating. However, it remains unclear how these different review properties contribute to the usefulness of their corresponding reviews in addressing the recommendation task. In particular, users show distinct preferences when considering different aspects of the reviews (i.e. properties) for making decisions about the items. Hence, it is important to model the relationship between the reviews properties and the usefulness of reviews while learning the users preferences and the items attributes. Therefore, we propose to model the reviews with their associated available properties. We introduce a novel review properties-based recommendation model (RPRM) that learns which review properties are more important than others in capturing the usefulness of reviews, thereby enhancing the recommendation results. Furthermore, inspired by the users information adoption framework, we integrate two loss functions and a negative sampling strategy into our proposed RPRM model, to ensure that the properties of reviews are correlated with the users preferences. We examine the effectiveness of RPRM using the well-known Yelp and Amazon datasets. Our results show that RPRM significantly outperforms a classical and five state-of-the-art baselines. Moreover, we experimentally show the advantages of using our proposed loss functions and negative sampling strategy, which further enhance the recommendation performances of RPRM.
The general aim of the recommender system is to provide personalized suggestions to users, which is opposed to suggesting popular items. However, the normal training paradigm, i.e., fitting a recommender model to recover the user behavior data with p ointwise or pairwise loss, makes the model biased towards popular items. This results in the terrible Matthew effect, making popular items be more frequently recommended and become even more popular. Existing work addresses this issue with Inverse Propensity Weighting (IPW), which decreases the impact of popular items on the training and increases the impact of long-tail items. Although theoretically sound, IPW methods are highly sensitive to the weighting strategy, which is notoriously difficult to tune. In this work, we explore the popularity bias issue from a novel and fundamental perspective -- cause-effect. We identify that popularity bias lies in the direct effect from the item node to the ranking score, such that an items intrinsic property is the cause of mistakenly assigning it a higher ranking score. To eliminate popularity bias, it is essential to answer the counterfactual question that what the ranking score would be if the model only uses item property. To this end, we formulate a causal graph to describe the important cause-effect relations in the recommendation process. During training, we perform multi-task learning to achieve the contribution of each cause; during testing, we perform counterfactual inference to remove the effect of item popularity. Remarkably, our solution amends the learning process of recommendation which is agnostic to a wide range of models -- it can be easily implemented in existing methods. We demonstrate it on Matrix Factorization (MF) and LightGCN [20]. Experiments on five real-world datasets demonstrate the effectiveness of our method.
Recommender systems usually amplify the biases in the data. The model learned from historical interactions with imbalanced item distribution will amplify the imbalance by over-recommending items from the major groups. Addressing this issue is essenti al for a healthy ecosystem of recommendation in the long run. Existing works apply bias control to the ranking targets (e.g., calibration, fairness, and diversity), but ignore the true reason for bias amplification and trade-off the recommendation accuracy. In this work, we scrutinize the cause-effect factors for bias amplification, identifying the main reason lies in the confounder effect of imbalanced item distribution on user representation and prediction score. The existence of such confounder pushes us to go beyond merely modeling the conditional probability and embrace the causal modeling for recommendation. Towards this end, we propose a Deconfounded Recommender System (DecRS), which models the causal effect of user representation on the prediction score. The key to eliminating the impact of the confounder lies in backdoor adjustment, which is however difficult to do due to the infinite sample space of the confounder. For this challenge, we contribute an approximation operator for backdoor adjustment which can be easily plugged into most recommender models. Lastly, we devise an inference strategy to dynamically regulate backdoor adjustment according to user status. We instantiate DecRS on two representative models FM and NFM, and conduct extensive experiments over two benchmarks to validate the superiority of our proposed DecRS.
State-of-the-art recommender systems have the ability to generate high-quality recommendations, but usually cannot provide intuitive explanations to humans due to the usage of black-box prediction models. The lack of transparency has highlighted the critical importance of improving the explainability of recommender systems. In this paper, we propose to extract causal rules from the user interaction history as post-hoc explanations for the black-box sequential recommendation mechanisms, whilst maintain the predictive accuracy of the recommendation model. Our approach firstly achieves counterfactual examples with the aid of a perturbation model, and then extracts personalized causal relationships for the recommendation model through a causal rule mining algorithm. Experiments are conducted on several state-of-the-art sequential recommendation models and real-world datasets to verify the performance of our model on generating causal explanations. Meanwhile, We evaluate the discovered causal explanations in terms of quality and fidelity, which show that compared with conventional association rules, causal rules can provide personalized and more effective explanations for the behavior of black-box recommendation models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا