ﻻ يوجد ملخص باللغة العربية
Drift-reduced MHD models are widely used to study magnetised plasma phenomena, in particular for magnetically confined fusion applications, as well as in solar and astrophysical research. This letter discusses the choice of Ohms law in these models, the resulting dispersion relations for the dynamics parallel to the magnetic field, and the implications for numerical simulations. We find that if electron pressure is included in Ohms law, then both electromagnetic and finite electron mass effects must also be included in order to obtain physical dispersion relations. A simple modification to the plasma vorticity is also found which improves handling of low density regions, of particular relevance to the simulation of the boundary region of magnetised plasmas.
Reduced fluid models for collisionless plasmas including electron inertia and finite Larmor radius corrections are derived for scales ranging from the ion to the electron gyroradii. Based either on pressure balance or on the incompressibility of the
The derivation of Lorentz-covariant generalizations of Ohms law has been a long-term issue in theoretical physics with deep implications for the study of relativistic effects in optical and atomic physics. In this article, we propose an alternative r
The interaction of lasers with plasmas very often leads to nonlocal transport conditions, where the classical hydrodynamic model fails to describe important microscopic physics related to highly mobile particles. In this study we analyze and further
The measurement of the propulsion of metallic microdroplets exposed to nanosecond laser pulses provides an elegant method for probing the ablation pressure in dense laser-produced plasma. We present the measurements of the propulsion velocity over th
Wave properties and instabilities in a magnetized, anisotropic, collisionless, rarefied hot plasma in fluid approximation are studied, using the 16-moments set of the transport equations obtained from the Vlasov equations. These equations differ from