ﻻ يوجد ملخص باللغة العربية
Driven many-body systems have been shown to exhibit discrete time crystal phases characterized by broken discrete time-translational symmetry. This has been achieved generally through a subharmonic response, in which the system undergoes one oscillation every other driving period. Here, we demonstrate that classical time crystals do not need to resonate in a subharmonic fashion but instead can also exhibit a continuously tunable anharmonic response to driving, which we show can emerge through a coresonance between modes in different branches of the dispersion relation in a parametrically driven medium. This response, characterized by a typically incommensurate ratio between the resonant frequencies and the driving frequency, is demonstrated by introducing a time crystal model consisting of an array of coupled pendula with alternating lengths. Importantly, the coresonance mechanism is the result of a bifurcation involving a fixed point and an invariant torus, with no intermediate limit cycles. This bifurcation thus gives rise to a many-body symmetry-breaking phenomenon directly connecting the symmetry-unbroken phase with a previously uncharacterized phase of matter, which we call an anharmonic time crystal phase. The mechanism is shown to generalize to driven media with any number of coupled fields and is expected to give rise to anharmonic responses in a range of weakly damped pattern-forming systems, with potential applications to the study of nonequilibrium phases, frequency conversion, and acoustic cloaking.
We report a new mechanism for the formation of localized states, which takes place without front propagation. Correspondingly, localized structures appear as solitary states, displaying a behavior of single independent cells. The phenomenon is observ
We study wave propagation in two-dimensional granular crystals under the Hertzian contact law consisting of hexagonal packings of spheres under various basin geometries including hexagonal, triangular, and circular basins which can be tiled with hexa
Self-organization, the ability of a system of microscopically interacting entities to shape macroscopically ordered structures, is ubiquitous in Nature. Spatio-temporal patterns are abundantly observed in a large plethora of applications, encompassin
We explain some pde2path setups for pattern formation in 1D, 2D and 3D. A focus is on new pde2path functions for branch switching at steady bifurcation points of higher multiplicity, typically due to discrete symmetries, but we also review general co
Pattern formation in systems with a conserved quantity is considered by studying the appropriate amplitude equations. The conservation law leads to a large-scale neutral mode that must be included in the asymptotic analysis for pattern formation near