ﻻ يوجد ملخص باللغة العربية
We develop a robust method to extract the pole configuration of a given partial-wave amplitude. In our approach, a deep neural network is constructed where the statistical errors of the experimental data are taken into account. The teaching dataset is constructed using a generic S-matrix parametrization, ensuring that all the poles produced are independent of each other. The inclusion of statistical error results into a noisy classification dataset which we should solve using the curriculum method. As an application, we use the elastic $pi N$ amplitude in the $I(J^P)=1/2(1/2^{-})$ sector where $10^6$ amplitudes are produced by combining points in each error bar of the experimental data. We fed the amplitudes to the trained deep neural network and find that the enhancements in the $pi N$ amplitude are caused by one pole in each nearby unphysical sheet and at most two poles in the distant sheet. Finally, we show that the extracted pole configurations are independent of the way points in each error bar are drawn and combined, demonstrating the statistical robustness of our method.
The communitys reliance on simplified descriptions of WIMP-nucleus interactions reflects the absence of analysis tools that integrate general theories of dark matter with standard treatments of nuclear response functions. To bridge this gap, we have
Coupled-channel dynamics for scattering and production processes in partial-wave amplitudes is discussed from a perspective that emphasizes unitarity and analyticity. We elaborate on several methods that have driven to important results in hadron phy
We study the use of deep learning techniques to reconstruct the kinematics of the deep inelastic scattering (DIS) process in electron-proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, a
We present the details of a new factorized approach to semi-inclusive deep-inelastic scattering which treats QED and QCD radiation on equal footing, and provides a systematically improvable approximation to the extraction of transverse momentum depen
Based on reflection symmetry in the reaction plane, it is shown that measuring the transverse spin-transfer coefficient $K_{yy}$ in the $bar{K}N to KXi$ reaction directly determines the parity of the produced cascade hyperon in a model-independent wa