ﻻ يوجد ملخص باللغة العربية
The scope of analog simulation in atomic, molecular, and optical systems has expanded greatly over the past decades. Recently, the idea of synthetic dimensions -- in which transport occurs in a space spanned by internal or motional states coupled by field-driven transitions -- has played a key role in this expansion. While approaches based on synthetic dimensions have led to rapid advances in single-particle Hamiltonian engineering, strong interaction effects have been conspicuously absent from most synthetic dimensions platforms. Here, in a lattice of coupled atomic momentum states, we show that atomic interactions result in large and qualitative changes to dynamics in the synthetic dimension. We explore how the interplay of nonlinear interactions and coherent tunneling enriches the dynamics of a one-band tight-binding model, giving rise to macroscopic self-trapping and phase-driven Josephson dynamics with a nonsinusoidal current-phase relationship, which can be viewed as stemming from a nonlinear band structure arising from interactions.
We study the influence of atomic interactions on quantum simulations in momentum-space lattices (MSLs), where driven transitions between discrete momentum states mimic transport between sites of a synthetic lattice. Low energy atomic collisions, whic
The static properties, i.e., existence and stability, as well as the quench-induced dynamics of nonlinear excitations of the vortex-bright type appearing in two-dimensional harmonically confined spin-1 Bose-Einstein condensates are investigated. Line
Dissipation can serve as a powerful resource for controlling the behavior of open quantum systems.Recently there has been a surge of interest in the influence of dissipative coupling on large quantum systems and, more specifically, how these processe
The beyond mean-field dynamics of a bent dark soliton embedded in a two-dimensional repulsively interacting Bose-Einstein condensate is explored. We examine the case of a single bent dark soliton comparing the mean-field dynamics to a correlated appr
We unravel the correlation effects of the second-order quantum phase transitions emerging on the ground state of a harmonically trapped spin-1 Bose gas, upon varying the involved Zeeman terms, as well as its breathing dynamics triggered by quenching