ﻻ يوجد ملخص باللغة العربية
The Advanced LIGO and Virgo gravitational wave observatories have opened a new window with which to study the inspiral and mergers of binary compact objects. These observations are most powerful when coordinated with multi-messenger observations. This was underlined by the first observation of a binary neutron star merger GW170817, coincident with a short Gamma-ray burst, GRB170817A, and the identification of the host galaxy NGC~4993 from the optical counterpart AT~2017gfo. Finding the fast-fading optical counterpart critically depends on the rapid production of a sky-map based on LIGO/Virgo data. Currently, a rapid initial sky map is produced followed by a more accurate, high-latency, $gtrsimSI{12}{hr}$ sky map. We study optimization choices of the Bayesian prior and signal model which can be used alongside other approaches such as reduced order quadrature. We find these yield up to a $60%$ reduction in the time required to produce the high-latency localisation for binary neutron star mergers.
We discuss gravitational waves from merging binaries using a Newtonian approach with some inputs from the Post-Newtonian formalism. We show that it is possible to understand the key features of the signal using fundamental physics and also demonstrat
The detection of intermediate-mass black holes (IMBHs) i.e. those with mass $sim 100$-$10^5 M_odot$, is an emerging goal of gravitational-wave (GW) astronomy with wide implications for cosmology and tests of strong-field gravity. Current PyCBC-based
To date, close to fifty presumed black hole binary mergers were observed by the LIGO and Virgo detectors. The analyses have been done with an assumption that these objects are black holes by limiting the spin prior to the Kerr bound. However, the abo
Inferring astrophysical information from gravitational waves emitted by compact binaries is one of the key science goals of gravitational-wave astronomy. In order to reach the full scientific potential of gravitational-wave experiments we require tec
Gravitational waves (GWs) from merging black holes allow for unprecedented probes of strong-field gravity. Testing gravity in this regime requires accurate predictions of gravitational waveform templates in viable extensions of General Relativity. We