ﻻ يوجد ملخص باللغة العربية
We consider the case with boundary of the classical Kazdan-Warner problem in dimension greater or equal than three, i.e. the prescription of scalar and boundary mean curvatures via conformal deformations of the metric. We deal in particular with negative scalar curvature and boundary mean curvature of arbitrary sign, which to our knowledge has not been treated in the literature. We employ a variational approach to prove new existence results, especially in three dimensions. One of the principal issues for this problem is to obtain compactness properties, due to the fact that bubbling may occur with profiles of hyperbolic balls or horospheres, and hence one may lose either pointwise estimates on the conformal factor or the total conformal volume. We can sometimes prevent them using integral estimates, Pohozaev identities and domain-variations of different types.
We employ three different methods to prove the following result on prescribed scalar curvature plus mean curvature problem: Let $(M^n,g_0)$ be a $n$-dimensional smooth compact manifold with boundary, where $n geq 3$, assume the conformal invariant $Y
We study the problem of deforming a Riemannian metric to a conformal one with nonzero constant scalar curvature and nonzero constant boundary mean curvature on a compact manifold of dimension $ngeq 3$. We prove the existence of such conformal metrics
We prove an existence result for helicoidal graphs with prescribed mean curvature in a large class of warped product spaces which comprises space forms.
We consider conformal deformations within a class of incomplete Riemannian metrics which generalize conic orbifold singularities by allowing both warping and any compact manifold (not just quotients of the sphere) to be the link of the singular set.
We consider the problem of finding complete conformal metrics with prescribed curvature functions of the Einstein tensor and of more general modified Schouten tensors. To achieve this, we reveal an algebraic structure of a wide class of fully nonline