ترغب بنشر مسار تعليمي؟ اضغط هنا

Good Practices and A Strong Baseline for Traffic Anomaly Detection

84   0   0.0 ( 0 )
 نشر من قبل Wenhao Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection of traffic anomalies is a critical component of the intelligent city transportation management system. Previous works have proposed a variety of notable insights and taken a step forward in this field, however, dealing with the complex traffic environment remains a challenge. Moreover, the lack of high-quality data and the complexity of the traffic scene, motivate us to study this problem from a hand-crafted perspective. In this paper, we propose a straightforward and efficient framework that includes pre-processing, a dynamic track module, and post-processing. With video stabilization, background modeling, and vehicle detection, the pro-processing phase aims to generate candidate anomalies. The dynamic tracking module seeks and locates the start time of anomalies by utilizing vehicle motion patterns and spatiotemporal status. Finally, we use post-processing to fine-tune the temporal boundary of anomalies. Not surprisingly, our proposed framework was ranked $1^{st}$ in the NVIDIA AI CITY 2021 leaderboard for traffic anomaly detection. The code is available at: https://github.com/Endeavour10020/AICity2021-Anomaly-Detection .



قيم البحث

اقرأ أيضاً

Anomaly detection in videos refers to the identification of events that do not conform to expected behavior. However, almost all existing methods tackle the problem by minimizing the reconstruction errors of training data, which cannot guarantee a la rger reconstruction error for an abnormal event. In this paper, we propose to tackle the anomaly detection problem within a video prediction framework. To the best of our knowledge, this is the first work that leverages the difference between a predicted future frame and its ground truth to detect an abnormal event. To predict a future frame with higher quality for normal events, other than the commonly used appearance (spatial) constraints on intensity and gradient, we also introduce a motion (temporal) constraint in video prediction by enforcing the optical flow between predicted frames and ground truth frames to be consistent, and this is the first work that introduces a temporal constraint into the video prediction task. Such spatial and motion constraints facilitate the future frame prediction for normal events, and consequently facilitate to identify those abnormal events that do not conform the expectation. Extensive experiments on both a toy dataset and some publicly available datasets validate the effectiveness of our method in terms of robustness to the uncertainty in normal events and the sensitivity to abnormal events.
Computer vision has evolved in the last decade as a key technology for numerous applications replacing human supervision. In this paper, we present a survey on relevant visual surveillance related researches for anomaly detection in public places, fo cusing primarily on roads. Firstly, we revisit the surveys done in the last 10 years in this field. Since the underlying building block of a typical anomaly detection is learning, we emphasize more on learning methods applied on video scenes. We then summarize the important contributions made during last six years on anomaly detection primarily focusing on features, underlying techniques, applied scenarios and types of anomalies using single static camera. Finally, we discuss the challenges in the computer vision related anomaly detection techniques and some of the important future possibilities.
Vehicle Re-Identification (Re-ID) aims to identify the same vehicle across different cameras, hence plays an important role in modern traffic management systems. The technical challenges require the algorithms must be robust in different views, resol ution, occlusion and illumination conditions. In this paper, we first analyze the main factors hindering the Vehicle Re-ID performance. We then present our solutions, specifically targeting the dataset Track 2 of the 5th AI City Challenge, including (1) reducing the domain gap between real and synthetic data, (2) network modification by stacking multi heads with attention mechanism, (3) adaptive loss weight adjustment. Our method achieves 61.34% mAP on the private CityFlow testset without using external dataset or pseudo labeling, and outperforms all previous works at 87.1% mAP on the Veri benchmark. The code is available at https://github.com/cybercore-co-ltd/track2_aicity_2021.
Data is the engine of modern computer vision, which necessitates collecting large-scale datasets. This is expensive, and guaranteeing the quality of the labels is a major challenge. In this paper, we investigate efficient annotation strategies for co llecting multi-class classification labels for a large collection of images. While methods that exploit learnt models for labeling exist, a surprisingly prevalent approach is to query humans for a fixed number of labels per datum and aggregate them, which is expensive. Building on prior work on online joint probabilistic modeling of human annotations and machine-generated beliefs, we propose modifications and best practices aimed at minimizing human labeling effort. Specifically, we make use of advances in self-supervised learning, view annotation as a semi-supervised learning problem, identify and mitigate pitfalls and ablate several key design choices to propose effective guidelines for labeling. Our analysis is done in a more realistic simulation that involves querying human labelers, which uncovers issues with evaluation using existing worker simulation methods. Simulated experiments on a 125k image subset of the ImageNet100 show that it can be annotated to 80% top-1 accuracy with 0.35 annotations per image on average, a 2.7x and 6.7x improvement over prior work and manual annotation, respectively. Project page: https://fidler-lab.github.io/efficient-annotation-cookbook
This paper proposes to develop a network phenotyping mechanism based on network resource usage analysis and identify abnormal network traffic. The network phenotyping may use different metrics in the cyber physical system (CPS), including resource an d network usage monitoring, physical state estimation. The set of devices will collectively decide a holistic view of the entire system through advanced image processing and machine learning methods. In this paper, we choose the network traffic pattern as a study case to demonstrate the effectiveness of the proposed method, while the methodology may similarly apply to classification and anomaly detection based on other resource metrics. We apply image processing and machine learning on the network resource usage to extract and recognize communication patterns. The phenotype method is experimented on four real-world decentralized applications. With proper length of sampled continuous network resource usage, the overall recognition accuracy is about 99%. Additionally, the recognition error is used to detect the anomaly network traffic. We simulate the anomaly network resource usage that equals to 10%, 20% and 30% of the normal network resource usage. The experiment results show the proposed anomaly detection method is efficient in detecting each intensity of anomaly network resource usage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا