ﻻ يوجد ملخص باللغة العربية
Evaluation is crucial in the development process of task-oriented dialogue systems. As an evaluation method, user simulation allows us to tackle issues such as scalability and cost-efficiency, making it a viable choice for large-scale automatic evaluation. To help build a human-like user simulator that can measure the quality of a dialogue, we propose the following task: simulating user satisfaction for the evaluation of task-oriented dialogue systems. The purpose of the task is to increase the evaluation power of user simulations and to make the simulation more human-like. To overcome a lack of annotated data, we propose a user satisfaction annotation dataset, USS, that includes 6,800 dialogues sampled from multiple domains, spanning real-world e-commerce dialogues, task-oriented dialogues constructed through Wizard-of-Oz experiments, and movie recommendation dialogues. All user utterances in those dialogues, as well as the dialogues themselves, have been labeled based on a 5-level satisfaction scale. We also share three baseline methods for user satisfaction prediction and action prediction tasks. Experiments conducted on the USS dataset suggest that distributed representations outperform feature-based methods. A model based on hierarchical GRUs achieves the best performance in in-domain user satisfaction prediction, while a BERT-based model has better cross-domain generalization ability.
Dialogue policy optimisation via reinforcement learning requires a large number of training interactions, which makes learning with real users time consuming and expensive. Many set-ups therefore rely on a user simulator instead of humans. These user
Dialogue management (DM) decides the next action of a dialogue system according to the current dialogue state, and thus plays a central role in task-oriented dialogue systems. Since dialogue management requires to have access to not only local uttera
Recent reinforcement learning algorithms for task-oriented dialogue system absorbs a lot of interest. However, an unavoidable obstacle for training such algorithms is that annotated dialogue corpora are often unavailable. One of the popular approache
There is increasing interest in developing personalized Task-oriented Dialogue Systems (TDSs). Previous work on personalized TDSs often assumes that complete user profiles are available for most or even all users. This is unrealistic because (1) not
Scarcity of training data for task-oriented dialogue systems is a well known problem that is usually tackled with costly and time-consuming manual data annotation. An alternative solution is to rely on automatic text generation which, although less a