ﻻ يوجد ملخص باللغة العربية
Asteroseismic observations are crucial to constrain stellar models with precision. Bayesian Estimation of STellar Parameters (BESTP) is a tool that utilizes Bayesian statistics and nested sampling Monte Carlo algorithm to search for the stellar models that best match a given set of classical and asteroseismic constraints from observations. The computation and evaluation of models are efficiently performed in an automated and a multi-threaded way. To illustrate the capabilities of BESTP, we estimate fundamental stellar properties for the Sun and the red-giant star HD 222076. In both cases, we find models that are consistent with the observations. We also evaluate the improvement in the precision of stellar parameters when the oscillation frequencies of individual modes are included as constraints, compared to the case when only the the large frequency separation is included. For the solar case, the uncertainties of estimated masses, radii and ages are reduced by 0.7%, 0.3% and 8% respectively. For HD 222076, they are reduced even more noticeably by 2%, 0.5% and 4.7%. We also note an improvement of 10% for the age of HD 222076 when the Gaia parallax is included as a constraint compared to the case when only the large separation is included as constraint.
An automated counterexample reproducibility tool based on MATLAB is presented, called DSValidator, with the goal of reproducing counterexamples that refute specific properties related to digital systems. We exploit counterexamples generated by the Di
The advent of the Web brought about major changes in the way people search for jobs and companies look for suitable candidates. As more employers and recruitment firms turn to the Web for job candidate search, an increasing number of people turn to t
The detection of solar-like oscillations in G and K giants with the CoRoT and Kepler space-based satellites allows robust constraints to be set on the mass and radius of such stars. The availability of these constraints for thousands of giants sampli
We study 23 previously published Kepler targets to perform a consistent grid-based Bayesian asteroseismic analysis and compare our results to those obtained via the Asteroseismic Modelling Portal (AMP). We find differences in the derived stellar para
Observations from the Kepler satellite were recently published for three bright G-type stars, which were monitored during the first 33.5d of science operations. One of these stars, KIC 11026764, exhibits a characteristic pattern of oscillation freque