ﻻ يوجد ملخص باللغة العربية
The light curve diversity of hydrogen-poor superluminous supernovae (SLSNe) has kept open the possibility that multiple power sources account for the population. Specifically, pair-instability explosions (PISNe), which produce large masses of $^{56}$Ni, have been argued as the origin of some slowly-evolving SLSNe. Here we present detailed observations of SN 2016inl (=PS16fgt), a slowly-evolving SLSN at $z=0.3057$, whose unusually red spectrum matches PS1-14bj, a SLSN with an exceptionally long rise time consistent with a PISN. Ground-based and Hubble Space Telescope data, spanning about 800 rest-frame days, reveal a significant light curve flattening, similar to that seen in SN 2015bn, and much slower than the decline rate expected from radioactive decay of $^{56}$Co. We therefore conclude that despite its slow evolution, SN 2016inl is inconsistent with a PISN. Instead, the light curve evolution matches the expected power-law spin-down of a magnetar central engine, but with a shallower power law ($Lpropto t^{-2.8}$) compared to that in SN 2015bn, indicating a possible difference in the $gamma$-ray opacity between the two events. Analytical modeling indicates typical magnetar engine parameters, but one of the highest ejecta masses ($approx 20$ M$_{odot}$) inferred for a SLSN. Our results indicate that monitoring the late-time light curve evolution of SLSNe provides a powerful diagnostic of their energy source.
iPTF13ehe is a hydrogen-poor superluminous supernova (SLSN) at z=0.3434, with a slow-evolving light curve and spectral features similar to SN2007bi. It rises within (83-148)days (rest-frame) to reach a peak bolometric luminosity of 1.3x$10^{44}$erg/s
We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift z = 0.650. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, thoug
Hydrogen-poor superluminous supernovae (SLSN-I) are a class of rare and energetic explosions discovered in untargeted transient surveys in the past decade. The progenitor stars and the physical mechanism behind their large radiated energies ($sim10^{
We present $textit{Hubble Space Telescope}$ imaging of the Calcium-rich supernova (SN) 2019ehk at 276 - 389 days after explosion. These observations represent the latest photometric measurements of a Calcium-rich transient to date and allows for the
SN2017egm is the closest (z=0.03) H-poor superluminous supernova (SLSN-I) detected to date, and a rare example of an SLSN-I in a massive and metal-rich galaxy. Here we present the HST UV & optical spectra covering (1000 - 5500)A taken at +3 day relat