ﻻ يوجد ملخص باللغة العربية
We study dynamical systems that have bounded complexity with respect to three kinds of directional metrics: the directional Bowen metric $d_k^{vec{v},b}$, the directional max-mean metric $hat{d}_k^{vec{v},b}$ and the directional mean metric $overline{d}_k^{vec{v},b}$. It is shown that a $mathbb{Z}^q$-topological system $(X,T)$ has bounded topological complexity with respect to ${d_k^{vec{v},b}}$ (respectively ${hat{d}_k^{vec{v},b}}$) if and only if $T$ is $(vec{v},b)$-equicontinuous (respectively $(vec{v},b)$-equicontinuous in the mean). It turns out that a measure $mu$ has bounded complexity with respect to ${d_k^{vec{v},b}}$ if and only if $T$ is $(mu,vec{v},b)$-equicontinuous. Whats more, it is shown that $mu$ has bounded complexity with respect to ${overline{d}_k^{vec{v},b}}$ if and only if $mu$ has bounded complexity with respect to ${hat{d}_k^{vec{v},b}}$ if and only if $T$ is $(mu,vec{v},b)$-mean equicontinuous if and only if $T$ is $(mu,vec{v},b)$-equicontinuous in the mean if and only if $mu$ has $vec{v}$-discrete spectrum.
In this paper, directional sequence entropy and directional Kronecker algebra for $mathbb{Z}^q$-systems are introduced. The relation between sequence entropy and directional sequence entropy are established. Meanwhile, direcitonal discrete spectrum s
We study directional mean dimension of $mathbb{Z}^k$-actions (where $k$ is a positive integer). On the one hand, we show that there is a $mathbb{Z}^2$-action whose directional mean dimension (considered as a $[0,+infty]$-valued function on the torus)
The weak mean equicontinuous properties for a countable discrete amenable group $G$ acting continuously on a compact metrizable space $X$ are studied. It is shown that the weak mean equicontinuity of $(X times X,G)$ is equivalent to the mean equicont
In this paper, we study discrete spectrum of invariant measures for countable discrete amenable group actions. We show that an invariant measure has discrete spectrum if and only if it has bounded measure complexity. We also prove that, discrete sp
In this paper, entropies, including measure-theoretic entropy and topological entropy, are considered for random $mathbb{Z}^k$-actions which are generated by random compositions of the generators of $mathbb{Z}^k$-actions. Applying Pesins theory for c