ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Analogs to High-Redshift Galaxies: I. Characterization of Dust Emission and Star Formation History

92   0   0.0 ( 0 )
 نشر من قبل Skarleth Moti\\~no Flores
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Star-forming dwarf galaxies have properties similar to those expected in high-redshift galaxies. Hence, these local galaxies may provide insights into the evolution of the first galaxies, and the physical processes at work. We present a sample of eleven potential local analogs to high-$z$ (LAHz) galaxies. The sample consists of blue compact dwarf galaxies, selected to have spectral energy distributions that fit galaxies at $1.5<z<4$. We use SOFIA-HAWC+ observations combined with optical and near-infrared data to characterize the dust properties, star formation rate (SFR) and star formation histories (SFH) of the sample of LAHz. We employ Bayesian analysis to characterize the dust using two-component black-body models. Using the LIGHTNING package we fit the spectral energy distribution of the LAHz galaxies over the FUV-FIR wavelength range, and derive the SFH in five time-steps up to a look-back time of 13.3 Gyr. Of the eleven LAHz candidates, six galaxies have SFH consistent with no star formation activity at look-back times beyond 1 Gyr. The remaining galaxies show residual levels of star formation at ages $gtrsim$1,Gyr, making them less suitable as local analogs. The six young galaxies stand out in our sample by having the lowest gas-phase metallicities. They are characterized by warmer dust, having the highest specific SFR, and the highest gas mass fractions. The young age of these six galaxies suggests that merging is less important as a driver of the star formation activity. The six LAHz candidates are promising candidates for studies of the gas dynamics role in driving star formation.

قيم البحث

اقرأ أيضاً

We present a new method to determine the star formation and metal enrichment histories of any resolved stellar system. This method is based on the fact that any observed star in a colour-magnitude diagram will have a certain probability of being asso ciated with an isochrone characterised by an age t and metallicity [Fe/H] (i.e. to have formed at the time and with the metallicity of that isochrone). We formulate this as a maximum likelihood problem that is then solved with a genetic algorithm. We test the method with synthetic simple and complex stellar populations. We also present tests using real data for open and globular clusters. We are able to determine parameters for the clusters (t, [Fe/H]) that agree well with results found in the literature. Our tests on complex stellar populations show that we can recover the star formation history and age-metallicity relation very accurately. Finally, we look at the history of the Carina dwarf galaxy using deep BVI data. Our results compare well with what we know about the history of Carina.
We present a new technique to measure multi-wavelength Super-deblended photometry from highly confused images, which we apply to Herschel and ground-based far-infrared (FIR) and (sub-)millimeter (mm) data in the northern field of the Great Observator ies Origins Deep Survey (GOODS). There are two key novelties. First, starting with a large database of deep Spitzer 24{mu}m and VLA 20cm detections that are used to define prior positions for fitting the FIR/submm data, we perform an active selection of useful priors independently at each frequency band, moving from less to more confused bands. Exploiting knowledge of redshift and all available photometry, we identify hopelessly faint priors that we remove from the fitting pool. This approach significantly reduces blending degeneracies and allows reliable photometry to be obtained for galaxies in FIR+mm bands. Second, we obtain well-behaved, nearly Gaussian flux density uncertainties, individually tailored to all fitted priors in each band. This is done by exploiting extensive simulations that allow us to calibrate the conversion of formal fitting uncertainties to realistic uncertainties depending on quantities directly measurable. We achieve deeper detection limits with high fidelity measurements and uncertainties at FIR+mm bands. As an illustration of the utility of these measurements, we identify 70 galaxies with z>3 and reliable FIR+mm detections. We present new constraints on the cosmic star formation rate density at 3<z<6, finding a significant contribution from z>3 dusty galaxies that are missed by optical-to-near-infrared color selection. Photometric measurements for 3306 priors, including over 1000 FIR+mm detections are released publicly with our catalog.
We post-process galaxies in the IllustrisTNG simulations with SKIRT radiative transfer calculations to make predictions for the rest-frame near-infrared (NIR) and far-infrared (FIR) properties of galaxies at $zgeq 4$. The rest-frame $K$- and $z$-band galaxy luminosity functions from TNG are overall consistent with observations, despite a $sim 0.4,mathrm{dex}$ underprediction at $z=4$ for $M_{rm z}lesssim -24$. Predictions for the JWST MIRI observed galaxy luminosity functions and number counts are given. We show that the next-generation survey conducted by JWST can detect 500 (30) galaxies in F1000W in a survey area of $500,{rm arcmin}^{2}$ at $z=6$ ($z=8$). As opposed to the consistency in the UV, optical and NIR, we find that TNG, combined with our dust modelling choices, significantly underpredicts the abundance of most dust-obscured and thus most luminous FIR galaxies. As a result, the obscured cosmic star formation rate density (SFRD) and the SFRD contributed by optical/NIR dark objects are underpredicted. The discrepancies discovered here could provide new constraints on the sub-grid feedback models, or the dust contents, of simulations. Meanwhile, although the TNG predicted dust temperature and its relations with IR luminosity and redshift are qualitatively consistent with observations, the peak dust temperature of $zgeq 6$ galaxies are overestimated by about $20,{rm K}$. This could be related to the limited mass resolution of our simulations to fully resolve the porosity of the interstellar medium (or specifically its dust content) at these redshifts.
[ABRIDGED] We derive the dust properties for 753 local galaxies and examine how these relate to some of their physical properties. We model their global dust-SEDs, treated statistically as an ensemble within a hierarchical Bayesian dust-SED modeling approach. The model-derived properties are the dust masses (Mdust), the average interstellar radiation field intensities (Uav), the mass fraction of very small dust grains (QPAH fraction), as well as their standard deviations. In addition, we use mid-IR observations to derive SFR and Mstar, quantities independent of the modeling. We derive distribution functions of the properties for the galaxy ensemble and per galaxy type. The mean value of Mdust for the ETGs is lower than that for the LTGs and IRs, despite ETGs and LTGs having Mstar spanning across the whole range observed. The Uav and QPAH fraction show no difference among different galaxy types. When fixing Uav to the Galactic value, the derived QPAH fraction varies across the Galactic value (0.071). The sSFR increases with galaxy type, while this is not the case for the dust-sSFR (=SFR/Mdust), showing an almost constant SFE per galaxy type. The galaxy sample is characterised by a tight relation between Mdust and Mstar for the LTGs and Irs, while ETGs scatter around this relation and tend towards smaller Mdust. While the relation indicates that Mdust may fundamentally be linked to Mstar, metallicity and Uav are the second parameter driving the scatter, which we investigate in a forthcoming work. We use the extended KS law to estimate Mgas and the GDR. The Mgas derived from the extended KS law is on average ~20% higher than that derived from the KS law, and a large standard deviation indicates the importance of the average SF present to regulate star formation and gas supply. The average GDR for the LTGs and IRs is 370, while including the ETGs gives an average of 550. [ABRIDGED]
We present a radio continuum study of a population of extremely young and starburst galaxies, termed as blueberries at ${sim}$ 1 GHz using the upgraded Giant Metrewave Radio Telescope (uGMRT). We find that their radio-based star formation rate (SFR) is suppressed by a factor of ${sim}$ 3.4 compared to the SFR based on optical emission lines. This might be due to (i) the young ages of these galaxies as a result of which a stable equilibrium via feedback from supernovae has not yet been established (ii) escape of cosmic ray electrons via diffusion or galactic scale outflows. The estimated non-thermal fraction in these galaxies has a median value of ${sim}$0.49, which is relatively lower than that in normal star-forming galaxies at such low frequencies. Their inferred equipartition magnetic field has a median value of 27 ${mu}$G, which is higher than those in more evolved systems like spiral galaxies. Such high magnetic fields suggest that small-scale dynamo rather than large-scale dynamo mechanisms might be playing a major role in amplifying magnetic fields in these galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا