ﻻ يوجد ملخص باللغة العربية
Diffusion pore imaging is an extension of diffusion-weighted nuclear magnetic resonance imaging enabling the direct measurement of the shape of arbitrarily formed, closed pores by probing diffusion restrictions using the motion of spin-bearing particles. Examples of such pores comprise cells in biological tissue or oil containing cavities in porous rocks. All pores contained in the measurement volume contribute to one reconstructed image, which reduces the problem of vanishing signal at increasing resolution present in conventional magnetic resonance imaging. It has been previously experimentally demonstrated that pore imaging using a combination of a long and a narrow magnetic field gradient pulse is feasible. In this work, an experimental verification is presented showing that pores can be imaged using short gradient pulses only. Experiments were carried out using hyperpolarized xenon gas in well-defined pores. The phase required for pore image reconstruction was retrieved from double diffusion encoded (DDE) measurements, while the magnitude could either be obtained from DDE signals or classical diffusion measurements with single encoding. The occurring image artifacts caused by restrictions of the gradient system, insufficient diffusion time, and by the phase reconstruction approach were investigated. Employing short gradient pulses only is advantageous compared to the initial long-narrow approach due to a more flexible sequence design when omitting the long gradient and due to faster convergence to the diffusion long-time limit, which may enable application to larger pores.
In porous material research, one main interest of nuclear magnetic resonance (NMR) diffusion experiments is the determination of the exact shape of pores. It has been a longstanding ques-tion if this is achievable in principle. In this work, we prese
Nuclear magnetic resonance (NMR) diffusion measurements are widely used to derive parameters indirectly related to the microstructure of biological tissues and porous media. However, a direct imaging of cell or pore shapes and sizes would be of high
This paper presents a novel approach on solving the phase problem in nuclear magnetic resonance (NMR) diffusion pore imaging, a method, which allows imaging the shape of arbitrary closed pores filled with an NMR-detectable medium for investigation of
Double diffusion encoding (DDE) magnetic resonance measurements of the water signal offers a unique ability to separate the effect of microscopic anisotropic diffusion in structural units of tissue from the overall macroscopic orientational distribut
Purpose: Biophysical tissue models are increasingly used in the interpretation of diffusion MRI (dMRI) data, with the potential to provide specific biomarkers of brain microstructural changes. However, the general Standard Model has recently shown th