ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic plasmonic color generation enabled by functional materials

127   0   0.0 ( 0 )
 نشر من قبل Na Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Displays are an indispensable medium to visually convey information in our daily life. Although conventional dye-based color displays have been rigorously advanced by world leading companies, critical issues still remain. For instance, color fading and wavelength-limited resolution restrict further developments. Plasmonic colors emerging from resonant interactions between light and metallic nanostructures can overcome these restrictions. With dynamic characteristics enabled by functional materials, dynamic plasmonic coloration may find a variety of applications in display technologies. In this review, we elucidate basic concepts for dynamic plasmonic color generation and highlight recent advances. In particular, we devote our review to a selection of dynamic controls endowed by functional materials, including magnesium, liquid crystals, electrochromic polymers, and phase change materials. We also discuss their performance in view of potential applications in current display technologies.



قيم البحث

اقرأ أيضاً

We present a comprehensive review of recent developments in the field of chiral plasmonics. Significant advances have been made recently in understanding the working principles of chiral plasmonic structures. With advances in micro- and nanofabricati on techniques, a variety of chiral plasmonic nanostructures have been experimentally realized; these tailored chiroptical properties vastly outperform those of their molecular counterparts. We focus on chiral plasmonic nanostructures created using bottom-up approaches, which not only allow for rational design and fabrication but most intriguingly in many cases also enable dynamic manipulation and tuning of chiroptical responses. We first discuss plasmon-induced chirality, resulting from the interaction of chiral molecules with plasmonic excitations. Subsequently, we discuss intrinsically chiral colloids, which give rise to optical chirality owing to their chiral shapes. Finally, we discuss plasmonic chirality, achieved by arranging achiral plasmonic particles into handed configurations on static or active templates. Chiral plasmonic nanostructures are very promising candidates for real-life applications owing to their significantly larger optical chirality than natural molecules. In addition, chiral plasmonic nanostructures offer engineerable and dynamic chiroptical responses, which are formidable to achieve in molecular systems. We thus anticipate that the field of chiral plasmonics will attract further widespread attention in applications ranging from enantioselective analysis to chiral sensing, structural determination, and in situ ultrasensitive detection of multiple disease biomarkers, as well as optical monitoring of transmembrane transport and intracellular metabolism.
141 - J. Jia , K. Zhang , G. Hu 2021
Cylindrical vector beams (CVBs), which possesses polarization distribution of rotational symmetry on the transverse plane, can be developed in many optical technologies. Conventional methods to generate CVBs contain redundant interferometers or need to switch among diverse elements, thus being inconvenient in applications containing multiple CVBs. Here we provide a passive polarization-selective device to substitute interferometers and simplify generation setup. It is accomplished by reversing topological charges of orbital angular momentum based on polarization-selective Gouy phase. In the process, tunable input light is the only condition to generate CVB with arbitrary topological charges. To cover both azimuthal and radial parameters of CVBs, we express the mapping between scalar Laguerre-Gaussian light on basic Poincare sphere and CVB on high-order Poincare sphere. The proposed device simplifies the generation of CVBs enormously, and thus has potentials in integrated devices for both quantum and classic optical experiments.
Nonlinear metasurfaces offer new paradigm for boosting optical effect beyond limitations of conventional materials. In this work, we present an alternative way to produce pronounced third-harmonic generation (THG) based on nonlinear field resonances rather than linear field enhancement, which is a typical strategy for achieving strong nonlinear response. By designing and studying a nonlinear plasmonic-graphene metasurface at terahertz regime with hybrid guided modes and bound states in the continuum modes, it is found that a THG with a narrow bandwidth can be observed, thanks to the strong resonance between generated weak THG field and these modes. Such strong nonlinear field resonance greatly enhances the photon-photon interactions, thus resulting in a large effective nonlinear coefficient of the whole system. This finding provides new opportunity for studying nonlinear optical metasurfaces.
Metasurface-based color display and holography have greatly advanced the state of the art display technologies. To further enrich the metasurface functionalities, recently a lot of research endeavors have been made to combine these two display functi ons within a single device. However, so far such metasurfaces have remained static and lack tunability once the devices are fabricated. In this work, we demonstrate a dynamic dual-function metasurface device at visible frequencies. It allows for switching between dynamic holography and dynamic color display, taking advantage of the reversible phase transition of magnesium through hydrogenation and dehydrogenation. Spatially arranged stepwise nanocavity pixels are employed to accurately control the amplitude and phase of light, enabling the generation of high-quality color prints and holograms. Our work represents a paradigm toward compact and multifunctional optical elements for future display technologies.
Three-dimensional elements, with refractive index distribution structured at sub-wavelength scale, provide an expansive optical design space that can be harnessed for demonstrating multi-functional free-space optical devices. Here we present 3D diele ctric elements, designed to be placed on top of the pixels of image sensors, that sort and focus light based on its color and polarization with efficiency significantly surpassing 2D absorptive and diffractive filters. The devices are designed via iterative gradient-based optimization to account for multiple target functions while ensuring compatibility with existing nanofabrication processes, and experimentally validated using a scaled device that operates at microwave frequencies. This approach combines arbitrary functions into a single compact element even where there is no known equivalent in bulk optics, enabling novel integrated photonic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا