ﻻ يوجد ملخص باللغة العربية
We classify compact manifolds of dimension three equipped with a path structure and a fixed contact form (which we refer to as a strict path structure) under the hypothesis that their automorphism group is non-compact. We use a Cartan connection associated to the structure and show that its curvature is constant.
We prove several theorems relating amenability of groups in various categories (discrete, definable, topological, automorphism group) to model-theoretic invariants (quotients by connected components, Lascar Galois group, G-compactness, ...). For exam
We prove a theorem that gives a sufficient condition for the full basic automorphism group of a complete Cartan foliation to admit a unique (finite-dimensional) Lie group structure in the category of Cartan foliations. Emphasize that the transverse C
We apply results proved in [Li19] to the linear order expansions of non-trivial free homogeneous structures and the universal n-linear order for $ngeq 2$, and prove the simplicity of their automorphism groups.
We will review the main results concerning the automorphism groups of saturated structures which were obtained during the two last decades. The main themes are: the small index property in the countable and uncountable cases; the possibility of recov
We are interested in the class, in the Elie Cartan sense, of left invariant forms on a Lie group. We construct the class of Lie algebras provided with a contact form and classify the frobeniusian Lie algebras up to a contraction. We also study forms