ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Reliability Management in Neuromorphic Computing

170   0   0.0 ( 0 )
 نشر من قبل Anup Das
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neuromorphic computing systems uses non-volatile memory (NVM) to implement high-density and low-energy synaptic storage. Elevated voltages and currents needed to operate NVMs cause aging of CMOS-based transistors in each neuron and synapse circuit in the hardware, drifting the transistors parameters from their nominal values. Aggressive device scaling increases power density and temperature, which accelerates the aging, challenging the reliable operation of neuromorphic systems. Existing reliability-oriented techniques periodically de-stress all neuron and synapse circuits in the hardware at fixed intervals, assuming worst-case operating conditions, without actually tracking their aging at run time. To de-stress these circuits, normal operation must be interrupted, which introduces latency in spike generation and propagation, impacting the inter-spike interval and hence, performance, e.g., accuracy. We propose a new architectural technique to mitigate the aging-related reliability problems in neuromorphic systems, by designing an intelligent run-time manager (NCRTM), which dynamically destresses neuron and synapse circuits in response to the short-term aging in their CMOS transistors during the execution of machine learning workloads, with the objective of meeting a reliability target. NCRTM de-stresses these circuits only when it is absolutely necessary to do so, otherwise reducing the performance impact by scheduling de-stress operations off the critical path. We evaluate NCRTM with state-of-the-art machine learning workloads on a neuromorphic hardware. Our results demonstrate that NCRTM significantly improves the reliability of neuromorphic hardware, with marginal impact on performance.

قيم البحث

اقرأ أيضاً

Neuromorphic computing systems such as DYNAPs and Loihi have recently been introduced to the computing community to improve performance and energy efficiency of machine learning programs, especially those that are implemented using Spiking Neural Net work (SNN). The role of a system software for neuromorphic systems is to cluster a large machine learning model (e.g., with many neurons and synapses) and map these clusters to the computing resources of the hardware. In this work, we formulate the energy consumption of a neuromorphic hardware, considering the power consumed by neurons and synapses, and the energy consumed in communicating spikes on the interconnect. Based on such formulation, we first evaluate the role of a system software in managing the energy consumption of neuromorphic systems. Next, we formulate a simple heuristic-based mapping approach to place the neurons and synapses onto the computing resources to reduce energy consumption. We evaluate our approach with 10 machine learning applications and demonstrate that the proposed mapping approach leads to a significant reduction of energy consumption of neuromorphic computing systems.
This work presents a dynamic power management architecture for neuromorphic many core systems such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PE) to change their supp ly voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28 nm SLP CMOS technology has been implemented. It includes 4 PEs which can be scaled from 0.7 V to 1.0 V with frequencies from 125 MHz to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second generation SpiNNaker neuromorphic many core system.
This paper presents the concepts behind the BrainScales (BSS) accelerated analog neuromorphic computing architecture. It describes the second-generation BrainScales-2 (BSS-2) version and its most recent in-silico realization, the HICANN-X Application Specific Integrated Circuit (ASIC), as it has been developed as part of the neuromorphic computing activities within the European Human Brain Project (HBP). While the first generation is implemented in an 180nm process, the second generation uses 65nm technology. This allows the integration of a digital plasticity processing unit, a highly-parallel micro processor specially built for the computational needs of learning in an accelerated analog neuromorphic systems. The presented architecture is based upon a continuous-time, analog, physical model implementation of neurons and synapses, resembling an analog neuromorphic accelerator attached to build-in digital compute cores. While the analog part emulates the spike-based dynamics of the neural network in continuous-time, the latter simulates biological processes happening on a slower time-scale, like structural and parameter changes. Compared to biological time-scales, the emulation is highly accelerated, i.e. all time-constants are several orders of magnitude smaller than in biology. Programmable ion channel emulation and inter-compartmental conductances allow the modeling of nonlinear dendrites, back-propagating action-potentials as well as NMDA and Calcium plateau potentials. To extend the usability of the analog accelerator, it also supports vector-matrix multiplication. Thereby, BSS-2 supports inference of deep convolutional networks as well as local-learning with complex ensembles of spiking neurons within the same substrate.
283 - Giacomo Indiveri 2021
The standard nature of computing is currently being challenged by a range of problems that start to hinder technological progress. One of the strategies being proposed to address some of these problems is to develop novel brain-inspired processing me thods and technologies, and apply them to a wide range of application scenarios. This is an extremely challenging endeavor that requires researchers in multiple disciplines to combine their efforts and co-design at the same time the processing methods, the supporting computing architectures, and their underlying technologies. The journal ``Neuromorphic Computing and Engineering (NCE) has been launched to support this new community in this effort and provide a forum and repository for presenting and discussing its latest advances. Through close collaboration with our colleagues on the editorial team, the scope and characteristics of NCE have been designed to ensure it serves a growing transdisciplinary and dynamic community across academia and industry.
Neuromorphic computing is a non-von Neumann computing paradigm that performs computation by emulating the human brain. Neuromorphic systems are extremely energy-efficient and known to consume thousands of times less power than CPUs and GPUs. They hav e the potential to drive critical use cases such as autonomous vehicles, edge computing and internet of things in the future. For this reason, they are sought to be an indispensable part of the future computing landscape. Neuromorphic systems are mainly used for spike-based machine learning applications, although there are some non-machine learning applications in graph theory, differential equations, and spike-based simulations. These applications suggest that neuromorphic computing might be capable of general-purpose computing. However, general-purpose computability of neuromorphic computing has not been established yet. In this work, we prove that neuromorphic computing is Turing-complete and therefore capable of general-purpose computing. Specifically, we present a model of neuromorphic computing, with just two neuron parameters (threshold and leak), and two synaptic parameters (weight and delay). We devise neuromorphic circuits for computing all the {mu}-recursive functions (i.e., constant, successor and projection functions) and all the {mu}-recursive operators (i.e., composition, primitive recursion and minimization operators). Given that the {mu}-recursive functions and operators are precisely the ones that can be computed using a Turing machine, this work establishes the Turing-completeness of neuromorphic computing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا