ﻻ يوجد ملخص باللغة العربية
A number of studies point out that current Visual Question Answering (VQA) models are severely affected by the language prior problem, which refers to blindly making predictions based on the language shortcut. Some efforts have been devoted to overcoming this issue with delicate models. However, there is no research to address it from the angle of the answer feature space learning, despite of the fact that existing VQA methods all cast VQA as a classification task. Inspired by this, in this work, we attempt to tackle the language prior problem from the viewpoint of the feature space learning. To this end, an adapted margin cosine loss is designed to discriminate the frequent and the sparse answer feature space under each question type properly. As a result, the limited patterns within the language modality are largely reduced, thereby less language priors would be introduced by our method. We apply this loss function to several baseline models and evaluate its effectiveness on two VQA-CP benchmarks. Experimental results demonstrate that our adapted margin cosine loss can greatly enhance the baseline models with an absolute performance gain of 15% on average, strongly verifying the potential of tackling the language prior problem in VQA from the angle of the answer feature space learning.
Face recognition has made extraordinary progress owing to the advancement of deep convolutional neural networks (CNNs). The central task of face recognition, including face verification and identification, involves face feature discrimination. Howeve
Most Visual Question Answering (VQA) models suffer from the language prior problem, which is caused by inherent data biases. Specifically, VQA models tend to answer questions (e.g., what color is the banana?) based on the high-frequency answers (e.g.
Few-shot learning (FSL) has attracted increasing attention in recent years but remains challenging, due to the intrinsic difficulty in learning to generalize from a few examples. This paper proposes an adaptive margin principle to improve the general
This paper proposes an additive phoneme-aware margin softmax (APM-Softmax) loss to train the multi-task learning network with phonetic information for language recognition. In additive margin softmax (AM-Softmax) loss, the margin is set as a constant
Softmax loss is arguably one of the most popular losses to train CNN models for image classification. However, recent works have exposed its limitation on feature discriminability. This paper casts a new viewpoint on the weakness of softmax loss. On