ﻻ يوجد ملخص باللغة العربية
We show that the NANOGrav signal can come from the Higgs inflation with a noncanonical kinetic term in terms of the scalar induced gravitational waves. The scalar induced gravitational waves generated in our model are also detectable by space based gravitational wave observatories. Primordial black holes with stellar masses that can explain LIGO-Virgo events are also produced. Therefore, the NANOGrav signal and the BHs in LIGO-Virgo events may both originate from the Higgs field.
We discuss a possible connection between the recent NANOGrav results and the primordial black holes (PBHs) for the LIGO-Virgo events. In particular, we focus on the axion-like curvaton model, which provides a sizable amount of PBHs and GWs induced by
We discuss the possibility of producing a significant fraction of dark matter in the form of primordial black holes in the context of the pre-big bang inflationary scenario. We take into account, to this purpose, the enhancement of curvature perturba
With approximately 50 binary black hole events detected by LIGO/Virgo to date and many more expected in the next few years, gravitational-wave astronomy is shifting from individual-event analyses to population studies. We perform a hierarchical Bayes
The production of primordial black hole (PBH) dark matter (DM) and the generation of scalar induced secondary gravitational waves by using the enhancement mechanism with a peak function in the non-canonical kinetic term in natural inflation is discus
Chaotic inflation is inconsistent with the observational constraint at 68% CL. Here, we show that the enhancement mechanism with a peak function in the noncanonical kinetic term not only helps the chaotic model $V(phi)=V_0phi^{1/3}$ satisfy the obser