ترغب بنشر مسار تعليمي؟ اضغط هنا

Rabi-like splitting and refractive index sensing with hybrid Tamm plasmon-cavity modes

367   0   0.0 ( 0 )
 نشر من قبل Shuvendu Jena
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have theoretically demonstrated Rabi-like splitting and self-referenced refractive index sensing in hybrid plasmonic-1D photonic crystal structures. The coupling between Tamm plasmon and cavity photon modes are tuned by incorporating a low refractive index spacer layer close to the metallic layer to form their hybrid modes. Anticrossing observed in the dispersion validates the strong coupling between the modes and causes Rabi-like splitting, which is supported by coupled mode theory. The Rabi-like splitting energy decreases with increasing number of periods (N) and refractive index contrast ({eta}) of the two dielectric materials used to make the 1D photonic crystals, and the observed variation is explained by an analytical model. The angular and polarization dependency of the hybrid modes shows that the polarization splitting of the lower hybrid mode is much stronger than that of the upper hybrid mode. Further investigating the hybrid modes, it is seen that one of the hybrid modes remains unchanged while other mode undergoes significant change with varying the cavity medium, which makes it useful for designing self-referenced refractive index sensors for sensing different analytes. For {eta}=1.333 and N=10 in a hybrid structure, the sensitivity increases from 51 nm/RIU to 201 nm/RIU with increasing cavity thickness from 170 nm to 892 nm. For a fixed cavity thickness of 892 nm, the sensitivity increases from 201 nm/RIU to 259 nm/RIU by increasing {eta} from 1.333 to 1.605. The sensing parameters such as detection accuracy, quality factor, and figure of merit for two different hybrid structures ([{eta}=1.333, N=10] and [{eta}=1.605, N=6]) are evaluated and compared. The value of resonant reflectivity of one of the hybrid modes changes considerably with varying analyte medium which can also be used for refractive index sensing.

قيم البحث

اقرأ أيضاً

In this work, a refractive index (RI) sensor with an effective integration of colorimetric detection and optical sensing capabilities has been developed. Colorimetric detection relies on the sensitivity of the structural color of photonic crystal (PC ) substrates to the changes in background RI, while the optical sensing is performed by measuring the magnification abilities of the dielectric microspheres, which depends on the position of the photonic nanojet. Based on this concept, we have successfully assembled 35 {mu}m-diameter barium titanate glass microspheres, 4.9 {mu}m-diameter polystyrene and silica microsphere monolayers on 1D or 2D PC substrates to perform RI sensing in various liquids. In addition, the developed RI sensor is highly compatible with commercial optical microscopes and applicable for RI sensing in areas as small as tens of square microns.
We report for the first time the bandgap engineering of Tamm plasmon photonic crystals - Tamm plasmon structures of which the metalic layer is periodically patterned into lattice of subwavelength period. By adopting a double period design, we evidenc ed experimentally a complete photonic bandgap up to $150,nm$ in the telecom range. Moreover, such design offers a great flexibility to tailor on-demand, and independently, the band-gap size from $30,nm$ to $150,nm$ and its spectral position within $50,nm$. Finally, by implementing a defect cavity within the Tamm plasmon photonic crystal, an ultimate cavity of $1.6mu m$ supporting a single highly confined Tamm mode is experimentally demonstrated. All experimental results are in perfect agreement with numerical calculations. Our results suggests the possibility to engineer novel band dispersion with surface modes of hybrid metalic/dielectric structures, thus open the way to Tamm plasmon towards applications in topological photonics, metamaterials and parity symmetry physics.
The arrangement of plasmonic nanoparticles in a non-symmetrical environment can feature the far-field and/or near-field interactions depending on the distance between the objects. In this work, we study the hybridization of three intrinsic plasmonic modes (dipolar, quadrupolar and hexapolar modes) sustained by one elliptical aluminium nanocylinder, as well as behavior of the hybridized modes when the nanoparticles are organized in array or when the refractive index of the surrounding medium is changed. The position and the intensity of these hybridized modes were shown to be affected by the near-field and far-field interactions between the nanoparticles. In this work, two hybridized modes were tuned in the UV spectral range to spectrally coincide with the intrinsic interband excitation and emission bands of ZnO nanocrystals. The refractive index of the ZnO nanocrystals layer influences the positions of the plasmonic modes and increases the role of the superstrate medium, which in turn results in the appearance of two separate modes in the small spectral region. Hence, the enhancement of ZnO nanocrystals photoluminescence benefits from the simultaneous excitation and emission enhancements.
Optical fibre-based sensors measuring refractive index shift in bodily fluids and tissues are versatile and accurate probes of physiological processes. Here, we suggest a refractive index sensor based on a microstructured exposed-core fibre (ECF). By considering a high refractive index coating of the exposed core, our modelling demonstrates the splitting of the guided mode into a surface sensing mode and a mode that is isolated from the surface. With the isolated mode acting as a reference arm, this two-mode one-fibre solution provides for robust interferometric sensing with a sensitivity of up to 60,000 rad/RIU-cm, which is suitable for sensing subtle physiological processes within hard-to-reach places inside living organisms, such as the spinal cord, ovarian tract and blood vessels.
Light confinement and amplification in micro- & nano-fiber have been intensively studied and a number of applications have been developed. However, the typical micro- & anno- fibers are usually free-standing or positioned on a substrate with lower re fractive index to ensure the light confinement and guiding mode. Here we numerically and experimentally demonstrate the possibility of confining light within a microfiber on a high refractive index substrate. In contrast to the strong leaky to the substrate, we found that the radiation loss was dependent on the radius of microfiber and the refractive index contrast. Consequently, quasi-guiding modes could be formed and the light could propagate and be amplified in such systems. By fabricating tapered silica fiber and dye-doped polymer fiber and placing them on sapphire substrates, the light propagation, amplification, and laser behaviors have been experimentally studied to verify the quasi-guiding modes in microfer with higher index substrate. We believe that our research will be essential for the applications of micro- and nano-fibers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا