ﻻ يوجد ملخص باللغة العربية
This paper is devoted to the study of independent spaces of q-polymatroids. With the aid of an auxiliary q-matroid it is shown that the collection of independent spaces satisfies the same properties as for q-matroids. However, in contrast to q-matroids, the rank value of an independent space does not agree with its dimension. Nonetheless, the rank values of the independent spaces fully determine the q-polymatroid, and this fact can be exploited to derive a cryptomorphism of q-polymatroids. Finally, the notions of minimal spanning spaces, maximally strongly independent spaces, and bases will be elaborated on.
The Assmus-Mattson theorem gives a way to identify block designs arising from codes. This result was broadened to matroids and weighted designs. In this work we present a further two-fold generalisation: first from matroids to polymatroids and also f
It is well known that linear rank-metric codes give rise to $q$-polymatroids. Analogously to classical matroid theory one may ask whether a given $q$-polymatroid is representable by a rank-metric code. We provide a partial answer by presenting exampl
This paper studies the problem of upper bounding the number of independent sets in a graph, expressed in terms of its degree distribution. For bipartite regular graphs, Kahn (2001) established a tight upper bound using an information-theoretic approa
After endowing the space of diagrams of probability spaces with an entropy distance, we study its large-scale geometry by identifying the asymptotic cone as a closed convex cone in a Banach space. We call this cone the tropical cone, and its elements
We prove the nonexistence of lattice tilings of $mathbb{Z}^n$ by Lee spheres of radius $2$ for all dimensions $ngeq 3$. This implies that the Golomb-Welch conjecture is true when the common radius of the Lee spheres equals $2$ and $2n^2+2n+1$ is a pr