ﻻ يوجد ملخص باللغة العربية
Magnetic Resonance Imaging (MRI) is a vital component of medical imaging. When compared to other image modalities, it has advantages such as the absence of radiation, superior soft tissue contrast, and complementary multiple sequence information. However, one drawback of MRI is its comparatively slow scanning and reconstruction compared to other image modalities, limiting its usage in some clinical applications when imaging time is critical. Traditional compressive sensing based MRI (CS-MRI) reconstruction can speed up MRI acquisition, but suffers from a long iterative process and noise-induced artefacts. Recently, Deep Neural Networks (DNNs) have been used in sparse MRI reconstruction models to recreate relatively high-quality images from heavily undersampled k-space data, allowing for much faster MRI scanning. However, there are still some hurdles to tackle. For example, directly training DNNs based on L1/L2 distance to the target fully sampled images could result in blurry reconstruction because L1/L2 loss can only enforce overall image or patch similarity and does not take into account local information such as anatomical sharpness. It is also hard to preserve fine image details while maintaining a natural appearance. More recently, Generative Adversarial Networks (GAN) based methods are proposed to solve fast MRI with enhanced image perceptual quality. The encoder obtains a latent space for the undersampling image, and the image is reconstructed by the decoder using the GAN loss. In this chapter, we review the GAN powered fast MRI methods with a comparative study on various anatomical datasets to demonstrate the generalisability and robustness of this kind of fast MRI while providing future perspectives.
The paper proposes a method to effectively fuse multi-exposure inputs and generates high-quality high dynamic range (HDR) images with unpaired datasets. Deep learning-based HDR image generation methods rely heavily on paired datasets. The ground trut
High-resolution magnetic resonance images can provide fine-grained anatomical information, but acquiring such data requires a long scanning time. In this paper, a framework called the Fused Attentive Generative Adversarial Networks(FA-GAN) is propose
LDCT has drawn major attention in the medical imaging field due to the potential health risks of CT-associated X-ray radiation to patients. Reducing the radiation dose, however, decreases the quality of the reconstructed images, which consequently co
This paper aims to contribute in bench-marking the automatic polyp segmentation problem using generative adversarial networks framework. Perceiving the problem as an image-to-image translation task, conditional generative adversarial networks are uti
Automated and accurate segmentations of left atrium (LA) and atrial scars from late gadolinium-enhanced cardiac magnetic resonance (LGE CMR) images are in high demand for quantifying atrial scars. The previous quantification of atrial scars relies on