ﻻ يوجد ملخص باللغة العربية
We consider the contribution of scalar resonances to hadronic light-by-light scattering in the anomalous magnetic moment of the muon. While the $f_0(500)$ has already been addressed in previous work using dispersion relations, heavier scalar resonances have only been estimated in hadronic models so far. Here, we compare an implementation of the $f_0(980)$ resonance in terms of the coupled-channel $S$-waves for $gamma^*gamma^*to pipi/bar K K$ to a narrow-width approximation, which indicates $a_mu^{text{HLbL}}[f_0(980)]=-0.2(2)times 10^{-11}$. With a similar estimate for the $a_0(980)$, the combined effect is thus well below $1times 10^{-11}$ in absolute value. We also estimate the contribution of heavier scalar resonances. In view of the very uncertain situation concerning their two-photon couplings we suggest to treat them together with other resonances of similar mass when imposing the matching to short-distance constraints. Our final result is a refined estimate of the $S$-wave rescattering effects in the $pi pi$ and $bar K K$ channel up to about $1.3$ GeV and including a narrow-width evaluation of the $a_0(980)$: $a_mu^text{HLbL}[text{scalars}]=-9(1)times 10^{-11}$.
In this third paper of a series dedicated to a dispersive treatment of the hadronic light-by-light (HLbL) tensor, we derive a partial-wave formulation for two-pion intermediate states in the HLbL contribution to the anomalous magnetic moment of the m
Using an effective sigma/f_0(500) resonance, which describes the pipi-->pipi and gammagamma-->pipi scattering data, we evaluate its contribution and the ones of the other scalar mesons to the the hadronic light-by-light (HLbL) scattering component of
The $pi^0$ pole constitutes the lowest-lying singularity of the hadronic light-by-light (HLbL) tensor, and thus provides the leading contribution in a dispersive approach to HLbL scattering in the anomalous magnetic moment of the muon $(g-2)_mu$. It
After a brief introduction on ongoing experimental and theoretical activities on $(g-2)_mu$, we report on recent progress in approaching the calculation of the hadronic light-by-light contribution with dispersive methods. General properties of the fo
We present a first model-independent calculation of $pipi$ intermediate states in the hadronic-light-by-light (HLbL) contribution to the anomalous magnetic moment of the muon $(g-2)_mu$ that goes beyond the scalar QED pion loop. To this end we combin