ﻻ يوجد ملخص باللغة العربية
Near-term quantum devices can be used to build quantum machine learning models, such as quantum kernel methods and quantum neural networks (QNN) to perform classification tasks. There have been many proposals how to use variational quantum circuits as quantum perceptrons or as QNNs. The aim of this work is to systematically compare different QNN architectures and to evaluate their relative expressive power with a teacher-student scheme. Specifically, the teacher model generates the datasets mapping random inputs to outputs which then have to be learned by the student models. This way, we avoid training on arbitrary data sets and allow to compare the learning capacity of different models directly via the loss, the prediction map, the accuracy and the relative entropy between the prediction maps. We focus particularly on a quantum perceptron model inspired by the recent work of Tacchino et. al. cite{Tacchino1} and compare it to the data re-uploading scheme that was originally introduced by Perez-Salinas et. al. cite{data_re-uploading}. We discuss alterations of the perceptron model and the formation of deep QNN to better understand the role of hidden units and non-linearities in these architectures.
A unique cognitive capability of humans consists in their ability to acquire new knowledge and skills from a sequence of experiences. Meanwhile, artificial intelligence systems are good at learning only the last given task without being able to remem
We demonstrate how quantum computation can provide non-trivial improvements in the computational and statistical complexity of the perceptron model. We develop two quantum algorithms for perceptron learning. The first algorithm exploits quantum infor
Noise and decoherence are two major obstacles to the implementation of large-scale quantum computing. Because of the no-cloning theorem, which says we cannot make an exact copy of an arbitrary quantum state, simple redundancy will not work in a quant
We propose to use neural networks to estimate the rates of coherent and incoherent processes in quantum systems from continuous measurement records. In particular, we adapt an image recognition algorithm to recognize the patterns in experimental sign
Utilizing quantum computers to deploy artificial neural networks (ANNs) will bring the potential of significant advancements in both speed and scale. In this paper, we propose a kind of quantum spike neural networks (SNNs) as well as comprehensively