ترغب بنشر مسار تعليمي؟ اضغط هنا

A scaling relation for the molecular cloud lifetime in Milky Way-like galaxies

107   0   0.0 ( 0 )
 نشر من قبل Sarah May Rose Jeffreson
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the time evolution of molecular clouds across three Milky Way-like isolated disc galaxy simulations at a temporal resolution of 1 Myr, and at a range of spatial resolutions spanning two orders of magnitude in spatial scale from ~10 pc up to ~1 kpc. The cloud evolution networks generated at the highest spatial resolution contain a cumulative total of ~80,000 separate molecular clouds in different galactic-dynamical environments. We find that clouds undergo mergers at a rate proportional to the crossing time between their centroids, but that their physical properties are largely insensitive to these interactions. Below the gas disc scale-height, the cloud lifetime obeys a scaling relation of the form $tau_{rm life} propto ell^{-0.3}$ with the cloud size $ell$, consistent with over-densities that collapse, form stars, and are dispersed by stellar feedback. Above the disc scale-height, these self-gravitating regions are no longer resolved, so the scaling relation flattens to a constant value of ~13 Myr, consistent with the turbulent crossing time of the gas disc, as observed in nearby disc galaxies.



قيم البحث

اقرأ أيضاً

208 - Ryan McKinnon 2015
We introduce a dust model for cosmological simulations implemented in the moving-mesh code AREPO and present a suite of cosmological hydrodynamical zoom-in simulations to study dust formation within galactic haloes. Our model accounts for the stellar production of dust, accretion of gas-phase metals onto existing grains, destruction of dust through local supernova activity, and dust driven by winds from star-forming regions. We find that accurate stellar and active galactic nuclei feedback is needed to reproduce the observed dust-metallicity relation and that dust growth largely dominates dust destruction. Our simulations predict a dust content of the interstellar medium which is consistent with observed scaling relations at $z = 0$, including scalings between dust-to-gas ratio and metallicity, dust mass and gas mass, dust-to-gas ratio and stellar mass, and dust-to-stellar mass ratio and gas fraction. We find that roughly two-thirds of dust at $z = 0$ originated from Type II supernovae, with the contribution from asymptotic giant branch stars below 20 per cent for $z gtrsim 5$. While our suite of Milky Way-sized galaxies forms dust in good agreement with a number of key observables, it predicts a high dust-to-metal ratio in the circumgalactic medium, which motivates a more realistic treatment of thermal sputtering of grains and dust cooling channels.
The role of large-scale stellar feedback in the formation of molecular clouds has been investigated observationally by examining the relationship between HI and 12CO(J=1-0) in supershells. Detailed parsec-resolution case studies of two Milky Way supe rshells demonstrate an enhanced level of molecularisation over both objects, and hence provide the first quantitative observational evidence of increased molecular cloud production in volumes of space affected by supershell activity. Recent results on supergiant shells in the LMC suggest that while they do indeed help to organise the ISM into over-dense structures, their global contribution to molecular cloud formation is of the order of only ~10%.
166 - X. H. Sun , W. Reich 2012
(Abridged) We study the polarisation properties, magnetic field strength, and synchrotron emission scale-height of Milky-Way-like galaxies in comparison with other spiral galaxies. We use our 3D-emission model of the Milky Way Galaxy for viewing the Milky Way from outside at various inclinations as spiral galaxies are observed. When seen edge-on the synchrotron emission from the Milky Way has an exponential scale-height of about 0.74 kpc, which is much smaller than the values obtained from previous models. We find that current analysis methods overestimate the scale-height of synchrotron emission of galaxies by about 10% at an inclination of 80 degree and about 40% at an inclination of 70 degree because of contamination from the disk. The observed RMs for face-on galaxies derived from high-frequency polarisation measurements approximate to the Faraday depths (FDs) when scaled by a factor of two. For edge-on galaxies, the observed RMs are indicative of the orientation of the large-scale magnetic field, but are not well related with the FDs. Assuming energy equipartition between the magnetic field and particles for the Milky Way results in an average magnetic-field strength, which is about two times larger than the intrinsic value for a K factor of 100. The number distribution of the integrated polarisation percentages of a large sample of unresolved Milky-Way-like galaxies peaks at about 4.2% at 4.8 GHz and at about 0.8% at 1.4GHz. Integrated polarisation angles rotated by 90 degree align very well with the position angles of the major axes, implying that unresolved galaxies do not have intrinsic RMs.
Disc truncations are the closest feature to an edge that galaxies have, but the nature of this phenomena is not yet understood. In this paper, we explore the truncations in two nearby (D ~15 Mpc) Milky Way-like galaxies: NGC 4565 and NGC 5907. We cov er a wide wavelength range from the NUV and optical, to 3.6 {mu}m. We find that the radius of the truncation (26+/-0.5 kpc) is independent of wavelength. Surprisingly, we identify (at all wavelengths) the truncation at altitudes as high as 3 kpc above the mid-plane, which implies that the thin disc in those outer regions has a width of at least this value. We find the characteristic U-shape radial colour profile associated with a star formation threshold at the location of the truncation. Further supporting such an origin, the stellar mass density at the position of the truncation is ~1-2 M_sun pc^-2, in good agreement with the critical gas density for transforming gas into stars. Beyond the truncation, the stellar mass in the mid-plane of the disc drops to just 0.1-0.2% of the total stellar mass of the galaxies. The detection of the truncation at high altitude in combination with the U shape of the radial colour profile allows us to establish, for the first time, an upper limit to the present-day growth rate of galactic discs. We find that, if the discs of the galaxies are growing inside-out, their growth rate is less than 0.6-0.9 kpc Gyr^-1.
Throughout the Milky Way, molecular clouds typically appear filamentary, and mounting evidence indicates that this morphology plays an important role in star formation. What is not known is to what extent the dense filaments most closely associated w ith star formation are connected to the surrounding diffuse clouds up to arbitrarily large scales. How are these cradles of star formation linked to the Milky Ways spiral structure? Using archival Galactic plane survey data, we have used multiple datasets in search of large-scale, velocity-coherent filaments in the Galactic plane. In this paper, we present our methods employed to identify coherent filamentary structures first in extinction and confirmed using Galactic Ring Survey data. We present a sample of seven Giant Molecular Filaments (GMFs) that have lengths of order $sim$100 pc, total masses of 10$^4$ - 10$^5$ M$_{odot}$, and exhibit velocity coherence over their full length. The GMFs we study appear to be inter-arm clouds and may be the Milky Way analogues to spurs observed in nearby spiral galaxies. We find that between 2 and 12% of the total mass (above $sim$10$^{20}$ cm$^{-2}$) is dense (above 10$^{22}$ cm$^{-2}$), where filaments near spiral arms in the Galactic midplane tend to have higher dense gas mass fractions than those further from the arms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا