ﻻ يوجد ملخص باللغة العربية
We systematically investigated the superconducting properties and the interplay between charge-density-waves (CDW) and superconductivity in lithium-intercalated 2H-TaS2. By gradually increasing the lithium content x, the CDW formation temperature is continuously suppressed, and the onset temperature of superconductivity is increased with a maximum transition temperature Tc = 3.5 K for x = 0.096. The bulk nature of superconductivity is confirmed by a superconducting shielding fraction of the order of unity for this composition. The electronic contribution to the specific heat and Hall resistivity data demonstrate that the CDW weakens with lithium-intercalation, thereby indirectly increasing carrier density and boosting superconductivity. While the sign of the charge carriers in undoped 2H-TaS2 changes from electron-like to hole type near the CDW formation temperature around 75 K, the lithium intercalated LixTaS2 show predominantly hole-type carriers in the CDW phase even for very low lithium contents.
Pd-intercalated ErTe$_3$ is studied as a model system to explore the effect of intertwined superconducting and charge density wave (CDW) orders. Despite the common wisdom that superconductivity emerges only when CDW is suppressed, we present data fro
The temperature dependence of the phonon spectrum in the superconducting transition metal dichalcogenide 2H-NbS$_2$ is measured by diffuse and inelastic x-ray scattering. A deep, wide and strongly temperature dependent softening, of the two lowest en
Despite being usually considered two competing phenomena, charge-density-wave and superconductivity coexist in few systems, the most emblematic one being the transition metal dichalcogenide 2H-NbSe$_2$. This unusual condition is responsible for speci
We demonstrate the sensitivity of transverse-field muon spin rotation (TF-muSR) to static charge-density-wave (CDW) order in the bulk of 2H-NbSe2. In the presence of CDW order the quadrupolar interaction of the 93Nb nuclei with the local electric-fie
Charge density wave (CDW), the periodic modulation of the electronic charge density, will open a gap on the Fermi surface that commonly leads to decreased or vanishing conductivity. On the other hand superconductivity, a commonly believed competing o