ﻻ يوجد ملخص باللغة العربية
Effects like selection in evolution as well as fertility inheritance in the development of populations can lead to a higher degree of asymmetry in evolutionary trees than expected under a null hypothesis. To identify and quantify such influences, various balance indices were proposed in the phylogenetic literature and have been in use for decades. However, so far no balance index was based on the number of emph{symmetry nodes}, even though symmetry nodes play an important role in other areas of mathematical phylogenetics and despite the fact that symmetry nodes are a quite natural way to measure balance or symmetry of a given tree. The aim of this manuscript is thus twofold: First, we will introduce the emph{symmetry nodes index} as an index for measuring balance of phylogenetic trees and analyze its extremal properties. We also show that this index can be calculated in linear time. This new index turns out to be a generalization of a simple and well-known balance index, namely the emph{cherry index}, as well as a specialization of another, less established, balance index, namely emph{Rogers $J$ index}. Thus, it is the second objective of the present manuscript to compare the new symmetry nodes index to these two indices and to underline its advantages. In order to do so, we will derive some extremal properties of the cherry index and Rogers $J$ index along the way and thus complement existing studies on these indices. Moreover, we used the programming language textsf{R} to implement all three indices in the software package textsf{symmeTree}, which has been made publicly available.
Measures of tree balance play an important role in various research areas, for example in phylogenetics. There they are for instance used to test whether an observed phylogenetic tree differs significantly from a tree generated by the Yule model of s
In phylogenetics it is of interest for rate matrix sets to satisfy closure under matrix multiplication as this makes finding the set of corresponding transition matrices possible without having to compute matrix exponentials. It is also advantageous
Spontaneous symmetry breaking is central to our understanding of physics and explains many natural phenomena, from cosmic scales to subatomic particles. Its use for applications requires devices with a high level of symmetry, but engineered systems a
We study a continuous-time dynamical system that models the evolving distribution of genotypes in an infinite population where genomes may have infinitely many or even a continuum of loci, mutations accumulate along lineages without back-mutation, ad
A tree-based network $N$ on $X$ is called universal if every phylogenetic tree on $X$ is a base tree for $N$. Recently, binary universal tree-based networks have attracted great attention in the literature and their existence has been analyzed in var