ﻻ يوجد ملخص باللغة العربية
Quantum emitters (QEs) in two-dimensional transition metal dichalcogenides (2D TMDCs) have advanced to the forefront of quantum communication and transduction research due to their unique potentials in accessing valley pseudo-spin degree of freedom (DOF) and facile integration into quantum-photonic, electronic and sensing platforms via the layer-by-layer-assembly approach. To date, QEs capable of operating in O-C telecommunication bands have not been demonstrated in TMDCs. Here we report a deterministic creation of such telecom QEs emitting over the 1080 to 1550 nm wavelength range via coupling of 2D molybdenum ditelluride (MoTe2) to strain inducing nano-pillar arrays. Our Hanbury Brown and Twiss experiment conducted at 10 K reveals clear photon antibunching with 90% single photon purity. Ultra-long lifetimes, 4-6 orders of magnitude longer than that of the 2D exciton, are also observed. Polarization analysis further reveals that while some QEs display cross-linearly polarized doublets with ~1 meV splitting resulting from the strain induced anisotropic exchange interaction, valley degeneracy is preserved in other QEs. Valley Zeeman splitting as well as restoring of valley symmetry in cross-polarized doublets are observed under 8T magnetic field. In contrast to other telecom QEs, our QEs which offer the potential to access valley DOF through single photons, could lead to unprecedented advantages in optical fiber-based quantum networks.
Real-world quantum applications, eg. on-chip quantum networks and quantum cryptography, necessitate large scale integrated single-photon sources with nanoscale footprint for modern information technology. While on-demand and high fidelity implantatio
Whereas the Si photonic platform is highly attractive for scalable optical quantum information processing, it lacks practical solutions for efficient photon generation. Self-assembled semiconductor quantum dots (QDs) efficiently emitting photons in t
Stacking order can significantly influence the physical properties of two-dimensional (2D) van der Waals materials. The recent isolation of atomically thin magnetic materials opens the door for control and design of magnetism via stacking order. Here
Most quantum communication schemes aim at the long-distance transmission of quantum information. In the quantum repeater concept, the transmission line is subdivided into shorter links interconnected by entanglement distribution via Bell-state measur
We show that a transition metal dichalcogenide monolayer with a radiatively broadened exciton resonance would exhibit perfect extinction of a transmitted field. This result holds for s- or p-polarized weak resonant light fields at any incidence angle