ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Discriminative Embedding for Sub-Action Learning in Complex Activities

427   0   0.0 ( 0 )
 نشر من قبل Swetha Sirnam
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Action recognition and detection in the context of long untrimmed video sequences has seen an increased attention from the research community. However, annotation of complex activities is usually time consuming and challenging in practice. Therefore, recent works started to tackle the problem of unsupervised learning of sub-actions in complex activities. This paper proposes a novel approach for unsupervised sub-action learning in complex activities. The proposed method maps both visual and temporal representations to a latent space where the sub-actions are learnt discriminatively in an end-to-end fashion. To this end, we propose to learn sub-actions as latent concepts and a novel discriminative latent concept learning (DLCL) module aids in learning sub-actions. The proposed DLCL module lends on the idea of latent concepts to learn compact representations in the latent embedding space in an unsupervised way. The result is a set of latent vectors that can be interpreted as cluster centers in the embedding space. The latent space itself is formed by a joint visual and temporal embedding capturing the visual similarity and temporal ordering of the data. Our joint learning with discriminative latent concept module is novel which eliminates the need for explicit clustering. We validate our approach on three benchmark datasets and show that the proposed combination of visual-temporal embedding and discriminative latent concepts allow to learn robust action representations in an unsupervised setting.

قيم البحث

اقرأ أيضاً

The state-of-the art solutions for human activity understanding from a video stream formulate the task as a spatio-temporal problem which requires joint localization of all individuals in the scene and classification of their actions or group activit y over time. Who is interacting with whom, e.g. not everyone in a queue is interacting with each other, is often not predicted. There are scenarios where people are best to be split into sub-groups, which we call social groups, and each social group may be engaged in a different social activity. In this paper, we solve the problem of simultaneously grouping people by their social interactions, predicting their individual actions and the social activity of each social group, which we call the social task. Our main contributions are: i) we propose an end-to-end trainable framework for the social task; ii) our proposed method also sets the state-of-the-art results on two widely adopted benchmarks for the traditional group activity recognition task (assuming individuals of the scene form a single group and predicting a single group activity label for the scene); iii) we introduce new annotations on an existing group activity dataset, re-purposing it for the social task.
With the remarkable success achieved by the Convolutional Neural Networks (CNNs) in object recognition recently, deep learning is being widely used in the computer vision community. Deep Metric Learning (DML), integrating deep learning with conventio nal metric learning, has set new records in many fields, especially in classification task. In this paper, we propose a replicable DML method, called Include and Exclude (IE) loss, to force the distance between a sample and its designated class center away from the mean distance of this sample to other class centers with a large margin in the exponential feature projection space. With the supervision of IE loss, we can train CNNs to enhance the intra-class compactness and inter-class separability, leading to great improvements on several public datasets ranging from object recognition to face verification. We conduct a comparative study of our algorithm with several typical DML methods on three kinds of networks with different capacity. Extensive experiments on three object recognition datasets and two face recognition datasets demonstrate that IE loss is always superior to other mainstream DML methods and approach the state-of-the-art results.
67 - Jun Li , Sinisa Todorovic 2021
This paper addresses unsupervised action segmentation. Prior work captures the frame-level temporal structure of videos by a feature embedding that encodes time locations of frames in the video. We advance prior work with a new self-supervised learni ng (SSL) of a feature embedding that accounts for both frame- and action-level structure of videos. Our SSL trains an RNN to recognize positive and negative action sequences, and the RNNs hidden layer is taken as our new action-level feature embedding. The positive and negative sequences consist of action segments sampled from videos, where in the former the sampled action segments respect their time ordering in the video, and in the latter they are shuffled. As supervision of actions is not available and our SSL requires access to action segments, we specify an HMM that explicitly models action lengths, and infer a MAP action segmentation with the Viterbi algorithm. The resulting action segmentation is used as pseudo-ground truth for estimating our action-level feature embedding and updating the HMM. We alternate the above steps within the Generalized EM framework, which ensures convergence. Our evaluation on the Breakfast, YouTube Instructions, and 50Salads datasets gives superior results to those of the state of the art.
145 - Songsong Wu , Yan Yan , Hao Tang 2019
Unsupervised Domain Adaptation (UDA) addresses the problem of performance degradation due to domain shift between training and testing sets, which is common in computer vision applications. Most existing UDA approaches are based on vector-form data a lthough the typical format of data or features in visual applications is multi-dimensional tensor. Besides, current methods, including the deep network approaches, assume that abundant labeled source samples are provided for training. However, the number of labeled source samples are always limited due to expensive annotation cost in practice, making sub-optimal performance been observed. In this paper, we propose to seek discriminative representation for multi-dimensional data by learning a structured dictionary in tensor space. The dictionary separates domain-specific information and class-specific information to guarantee the representation robust to domains. In addition, a pseudo-label estimation scheme is developed to combine with discriminant analysis in the algorithm iteration for avoiding the external classifier design. We perform extensive results on different datasets with limited source samples. Experimental results demonstrates that the proposed method outperforms the state-of-the-art approaches.
Local discriminative representation is needed in many medical image analysis tasks such as identifying sub-types of lesion or segmenting detailed components of anatomical structures. However, the commonly applied supervised representation learning me thods require a large amount of annotated data, and unsupervised discriminative representation learning distinguishes different images by learning a global feature, both of which are not suitable for localized medical image analysis tasks. In order to avoid the limitations of these two methods, we introduce local discrimination into unsupervised representation learning in this work. The model contains two branches: one is an embedding branch which learns an embedding function to disperse dissimilar pixels over a low-dimensional hypersphere; and the other is a clustering branch which learns a clustering function to classify similar pixels into the same cluster. These two branches are trained simultaneously in a mutually beneficial pattern, and the learnt local discriminative representations are able to well measure the similarity of local image regions. These representations can be transferred to enhance various downstream tasks. Meanwhile, they can also be applied to cluster anatomical structures from unlabeled medical images under the guidance of topological priors from simulation or other structures with similar topological characteristics. The effectiveness and usefulness of the proposed method are demonstrated by enhancing various downstream tasks and clustering anatomical structures in retinal images and chest X-ray images.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا