ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of the Pure Polycyclic Aromatic Hydrocarbon Indene ($c$-C$_9$H$_8$) with GOTHAM Observations of TMC-1

141   0   0.0 ( 0 )
 نشر من قبل Andrew Burkhardt
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polycyclic Aromatic Hydrocarbons (PAHs) have long been invoked in the study of interstellar and protostellar sources, but the unambiguous identification of any individual PAH has proven elusive until very recently. As a result, the formation mechanisms for this important class of molecules remain poorly constrained. Here we report the first interstellar detection of a pure hydrocarbon PAH, indene (C$_9$H$_8$), as part of the GBT Observations of TMC-1: Hunting for Aromatic Molecules (GOTHAM) survey. This detection provides a new avenue for chemical inquiry, complementing the existing detections of CN-functionalized aromatic molecules. From fitting the GOTHAM observations, indene is found to be the most abundant organic ring detected in TMC-1 to date. And from astrochemical modeling with NAUTILUS, the observed abundance is greater than the models prediction by several orders of magnitude suggesting that current formation pathways in astrochemical models are incomplete. The detection of indene in relatively high abundance implies related species such as cyanoindene, cyclopentadiene, toluene, and styrene may be detectable in dark clouds.

قيم البحث

اقرأ أيضاً

We report the detection for the first time in space of three new pure hydrocarbon cycles in TMC-1: c-C3HCCH (ethynyl cyclopropenylidene), c-C5H6 (cyclopentadiene) and c-C9H8 (indene). We derive a column density of 3.1e11 cm-2 for the former cycle and similar values, in the range (1-2)e13 cm-2, for the two latter molecules. This means that cyclopentadiene and indene, in spite of their large size, are exceptionally abundant, only a factor of five less abundant than the ubiquitous cyclic hydrocarbon c-C3H2. The high abundance found for these two hydrocarbon cycles, together with the high abundance previously found for the propargyl radical (CH2CCH) and other hydrocarbons like vinyl and allenyl acetylene (Agundez et al. 2021; Cernicharo et al. 2021a,b), start to allow us to quantify the abundant content of hydrocarbon rings in cold dark clouds and to identify the intermediate species that are probably behind the in situ bottom-up synthesis of aromatic cycles in these environments. While c-C3HCCH is most likely formed through the reaction between the radical CCH and c-C3H2, the high observed abundances of cyclopentadiene and indene are difficult to explain through currently proposed chemical mechanisms. Further studies are needed to identify how are five- and six-membered rings formed under the cold conditions of clouds like TMC-1.
We report the discovery of two unsaturated organic species, trans-(E)-cyanovinylacetylene and vinylcyanoacetylene, using the second data release of the GOTHAM deep survey towards TMC-1 with the 100 m Green Bank Telescope. For both detections, we perf ormed velocity stacking and matched filter analyses using Markov chain Monte Carlo simulations, and for trans-(E)-cyanovinylacetylene, three rotational lines were observed at low signal-to-noise (${sim}$3$sigma$). From this analysis, we derive column densities of $2times10^{11}$ and $3times10^{11}$ cm$^{-2}$ for vinylcyanoacetylene and trans-(E)-cyanovinylacetylene, respectively, and an upper limit of $<2times10^{11}$ cm$^{-2}$ for trans-(Z)-cyanovinylacetylene. Comparisons with G3//B3LYP semi-empirical thermochemical calculations indicate abundances of the [H$_3$C$_5$N}] isomers are not consistent with their thermodynamic stability, and instead their abundances are mainly driven by dynamics. We provide discussion into how these species may be formed in TMC-1, with reference to related species like vinyl cyanide (CH$_2$=CHCN). As part of this discussion, we performed the same analysis for ethyl cyanide (CH$_3$CH$_2$CN), the hydrogenation product of CH$_2$=CHCN. This analysis provides evidence -- at 4.17$sigma$ significance -- an upper limit to the column density of $<4times10^{11}$ cm$^{-2}$; an order of magnitude lower than previous upper limits towards this source.
We report the first detection in space of the cumulene carbon chain $l$-H$_2$C$_5$. A total of eleven rotational transitions, with $J_{up}$ = 7-10 and $K_a$ = 0 and 1, were detected in TMC-1 in the 31.0-50.4 GHz range using the Yebes 40m radio telesc ope. We derive a column density of (1.8$pm$0.5)$times$10$^{10}$ cm$^{-2}$. In addition, we report observations of other cumulene carbenes detected previously in TMC-1, to compare their abundances with the newly detected cumulene carbene chain. We find that $l$-H$_2$C$_5$ is $sim$4.0 times less abundant than the larger cumulene carbene $l$-H$_2$C$_6$, while it is $sim$300 and $sim$500 times less abundant than the shorter chains $l$-H$_2$C$_3$ and $l$-H$_2$C$_4$. We discuss the most likely gas-phase chemical routes to these cumulenes in TMC-1 and stress that chemical kinetics studies able to distinguish between different isomers are needed to shed light on the chemistry of C$_n$H$_2$ isomers with $n$,$>$,3.
93 - E. R. Micelotta 2009
Context: PAHs appear to be an ubiquitous interstellar dust component but the effects of shocks waves upon them have never been fully investigated. Aims: To study the effects of energetic (~0.01-1 keV) ion (H, He and C) and electron collisions on PAHs in interstellar shock waves.Methods: We calculate the ion-PAH and electron-PAH nuclear and electronic interactions, above the threshold for carbon atom loss from a PAH, in 50-200 km/s shock waves in the warm intercloud medium. Results: Interstellar PAHs (Nc = 50) do not survive in shocks with velocities greater than 100 km/s and larger PAHs (Nc = 200) are destroyed for shocks with velocities greater/equal to 125 km/s. For shocks in the ~75 - 100 km/s range, where destruction is not complete, the PAH structure is likely to be severely denatured by the loss of an important fraction (20-40%) of the carbon atoms. We derive typical PAH lifetimes of the order of a few x10^8 yr for the Galaxy. These results are robust and independent of the uncertainties in some key parameters that have yet to be well-determined experimentally. Conclusions: The observation of PAH emission in shock regions implies that that emission either arises outside the shocked region or that those regions entrain denser clumps that, unless they are completely ablated and eroded in the shocked gas, allow dust and PAHs to survive in extreme environments.
112 - E. R. Micelotta (1 , 2 , 3 2010
Context: Cosmic rays are present in almost all phases of the ISM. PAHs and cosmic rays represent an abundant and ubiquitous component of the interstellar medium. However, the interaction between them has never before been fully investigated. Aims: To study the effects of cosmic ray ion (H, He, CNO and Fe-Co-Ni) and electron bombardment of PAHs in galactic and extragalactic environments. Methods: We calculate the nuclear and electronic interactions for collisions between PAHs and cosmic ray ions and electrons with energies between 5 MeV/nucleon and 10 GeV, above the threshold for carbon atom loss, in normal galaxies, starburst galaxies and cooling flow galaxy clusters. Results: The timescale for PAH destruction by cosmic ray ions depends on the electronic excitation energy Eo and on the amount of energy available for dissociation. Small PAHs are destroyed faster, with He and the CNO group being the more effective projectiles. For electron collisions, the lifetime is independent of the PAH size and varies with the threshold energy To. Conclusions: Cosmic rays process the PAHs in diffuse clouds, where the destruction due to interstellar shocks is less efficient. In the hot gas filling galactic halos, outflows of starburst galaxies and intra-cluster medium, PAH destruction is dominated by collisions with thermal ions and electrons, but this mechanism is ineffective if the molecules are in denser cloudlets and isolated from the hot gas. Cosmic rays can access the denser clouds and together with X-rays will set the lifetime of those protected PAHs. This limits the use of PAHs as a`dye for tracing the presence of cold entrained material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا