ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond freeze-in: Dark Matter via inverse phase transition and gravitational wave signal

69   0   0.0 ( 0 )
 نشر من قبل Sabir Ramazanov Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel scenario of Dark Matter production naturally connected with generation of gravitational waves. Dark Matter is modelled as a real scalar, which interacts with the hot primordial plasma through a portal coupling to another scalar field. For a particular sign of the coupling, this system exhibits an inverse second order phase transition. The latter leads to an abundant Dark Matter production, even if the portal interaction is so weak that the freeze-in mechanism is inefficient. The model predicts domain wall formation in the Universe, long time before the inverse phase transition. These domain walls have a tension decreasing with time, and completely disappear at the inverse phase transition, so that the problem of overclosing the Universe is avoided. The domain wall network emits gravitational waves with characteristics defined by those of Dark Matter. In particular, the peak frequency of gravitational waves is determined by the portal coupling constant, and falls in the observable range for currently planned gravitational wave detectors.

قيم البحث

اقرأ أيضاً

We study the stochastic background of gravitational waves which accompany the sudden freeze-out of dark matter triggered by a cosmological first order phase transition that endows dark matter with mass. We consider models that produce the measured da rk matter relic abundance via (1) bubble filtering, and (2) inflation and reheating, and show that gravitational waves from these mechanisms are detectable at future interferometers.
We investigate the potential stochastic gravitational waves from first-order electroweak phase transitions in a model with pseudo-Nambu-Goldstone dark matter and two Higgs doublets. The dark matter candidate can naturally evade direct detection bound s, and can achieve the observed relic abundance via the thermal mechanism. Three scalar fields in the model obtain vacuum expectation values, related to phase transitions at the early Universe. We search for the parameter points that can cause first-order phase transitions, taking into account the existed experimental constraints. The resulting gravitational wave spectra are further evaluated. Some parameter points are found to induce strong gravitational wave signals, which have the opportunity to be detected in future space-based interferometer experiments LISA, Taiji, and TianQin.
Many models of physics beyond the Standard Model predict a strong first-order phase transition (SFOPT) in the early Universe that leads to observable gravitational waves (GWs). In this paper, we propose a novel method for presenting and comparing the GW signals that are predicted by different models. Our approach is based on the observation that the GW signal has an approximately model-independent spectral shape. This allows us to represent it solely in terms of a finite number of observables, that is, a set of peak amplitudes and peak frequencies. As an example, we consider the GW signal in the real-scalar-singlet extension of the Standard Model (xSM). We construct the signal region of the xSM in the space of observables and show how it will be probed by future space-borne interferometers. Our analysis results in sensitivity plots that are reminiscent of similar plots that are typically shown for dark-matter direct-detection experiments, but which are novel in the context of GWs from a SFOPT. These plots set the stage for a systematic model comparison, the exploration of underlying model-parameter dependencies, and the construction of distribution functions in the space of observables. In our plots, the experimental sensitivities of future searches for a stochastic GW signal are indicated by peak-integrated sensitivity curves. A detailed discussion of these curves, including fit functions, is contained in a companion paper [2002.04615]. The data and code that we used in our analysis can be downloaded from Zenodo [https://doi.org/10.5281/zenodo.3699415].
We propose a novel mechanism to realize two-component asymmetric dark matter of very different mass scales through bound state formation and late freeze-in decay. Assuming a particle-antiparticle asymmetry is initially shared by SM baryons and two da rk matter components, we demonstrate that the existence of bound states formed by the heavy component can efficiently transfer the asymmetry from the heavy to the light component via late decay. In this case, the energy densities of the two components can be comparable, and the correct relic density is reproduced.
We consider dark matter (DM) with very weak couplings to the standard model (SM), such that its self-annihilation cross section is much smaller than the canonical one, $langlesigma vrangle_{chichi} ll 10^{-26}mathrm{cm}^3/mathrm{s}$. In this case DM self-annihilation is negligible for the dynamics of freeze-out and DM dilution is solely driven by efficient annihilation of heavier accompanying dark sector particles provided that DM maintains chemical equilibrium with the dark sector. This chemical equilibrium is established by conversion processes which require much smaller couplings to be efficient than annihilation. The chemical decoupling of DM from the SM can either be initiated by the freeze-out of annihilation, resembling a co-annihilation scenario, or of conversion processes, leading to the scenario of conversion-driven freeze-out. We focus on the latter and discuss its distinct phenomenology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا