ترغب بنشر مسار تعليمي؟ اضغط هنا

Provably Convergent Learned Inexact Descent Algorithm for Low-Dose CT Reconstruction

121   0   0.0 ( 0 )
 نشر من قبل Qingchao Zhang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a provably convergent method, called Efficient Learned Descent Algorithm (ELDA), for low-dose CT (LDCT) reconstruction. ELDA is a highly interpretable neural network architecture with learned parameters and meanwhile retains convergence guarantee as classical optimization algorithms. To improve reconstruction quality, the proposed ELDA also employs a new non-local feature mapping and an associated regularizer. We compare ELDA with several state-of-the-art deep image methods, such as RED-CNN and Learned Primal-Dual, on a set of LDCT reconstruction problems. Numerical experiments demonstrate improvement of reconstruction quality using ELDA with merely 19 layers, suggesting the promising performance of ELDA in solution accuracy and parameter efficiency.



قيم البحث

اقرأ أيضاً

By the ALARA (As Low As Reasonably Achievable) principle, ultra-low-dose CT reconstruction is a holy grail to minimize cancer risks and genetic damages, especially for children. With the development of medical CT technologies, the iterative algorithm s are widely used to reconstruct decent CT images from a low-dose scan. Recently, artificial intelligence (AI) techniques have shown a great promise in further reducing CT radiation dose to the next level. In this paper, we demonstrate that AI-powered CT reconstruction offers diagnostic image quality at an ultra-low-dose level comparable to that of radiography. Specifically, here we develop a Split Unrolled Grid-like Alternative Reconstruction (SUGAR) network, in which deep learning, physical modeling and image prior are integrated. The reconstruction results from clinical datasets show that excellent images can be reconstructed using SUGAR from 36 projections. This approach has a potential to change future healthcare.
Achieving high-quality reconstructions from low-dose computed tomography (LDCT) measurements is of much importance in clinical settings. Model-based image reconstruction methods have been proven to be effective in removing artifacts in LDCT. In this work, we propose an approach to learn a rich two-layer clustering-based sparsifying transform model (MCST2), where image patches and their subsequent feature maps (filter residuals) are clustered into groups with different learned sparsifying filters per group. We investigate a penalized weighted least squares (PWLS) approach for LDCT reconstruction incorporating learned MCST2 priors. Experimental results show the superior performance of the proposed PWLS-MCST2 approach compared to other related recent schemes.
354 - Siqi Ye , Yong Long , Il Yong Chun 2020
This paper applies the recent fast iterative neural network framework, Momentum-Net, using appropriate models to low-dose X-ray computed tomography (LDCT) image reconstruction. At each layer of the proposed Momentum-Net, the model-based image reconst ruction module solves the majorized penalized weighted least-square problem, and the image refining module uses a four-layer convolutional neural network (CNN). Experimental results with the NIH AAPM-Mayo Clinic Low Dose CT Grand Challenge dataset show that the proposed Momentum-Net architecture significantly improves image reconstruction accuracy, compared to a state-of-the-art noniterative image denoising deep neural network (NN), WavResNet (in LDCT). We also investigated the spectral normalization technique that applies to image refining NN learning to satisfy the nonexpansive NN property; however, experimental results show that this does not improve the image reconstruction performance of Momentum-Net.
We propose a Noise Entangled GAN (NE-GAN) for simulating low-dose computed tomography (CT) images from a higher dose CT image. First, we present two schemes to generate a clean CT image and a noise image from the high-dose CT image. Then, given these generated images, an NE-GAN is proposed to simulate different levels of low-dose CT images, where the level of generated noise can be continuously controlled by a noise factor. NE-GAN consists of a generator and a set of discriminators, and the number of discriminators is determined by the number of noise levels during training. Compared with the traditional methods based on the projection data that are usually unavailable in real applications, NE-GAN can directly learn from the real and/or simulated CT images and may create low-dose CT images quickly without the need of raw data or other proprietary CT scanner information. The experimental results show that the proposed method has the potential to simulate realistic low-dose CT images.
The extensive use of medical CT has raised a public concern over the radiation dose to the patient. Reducing the radiation dose leads to increased CT image noise and artifacts, which can adversely affect not only the radiologists judgement but also t he performance of downstream medical image analysis tasks. Various low-dose CT denoising methods, especially the recent deep learning based approaches, have produced impressive results. However, the existing denoising methods are all downstream-task-agnostic and neglect the diverse needs of the downstream applications. In this paper, we introduce a novel Task-Oriented Denoising Network (TOD-Net) with a task-oriented loss leveraging knowledge from the downstream tasks. Comprehensive empirical analysis shows that the task-oriented loss complements other task agnostic losses by steering the denoiser to enhance the image quality in the task related regions of interest. Such enhancement in turn brings general boosts on the performance of various methods for the downstream task. The presented work may shed light on the future development of context-aware image denoising methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا