ترغب بنشر مسار تعليمي؟ اضغط هنا

Provenance-based Data Skipping (TechReport)

232   0   0.0 ( 0 )
 نشر من قبل Xing Niu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Database systems analyze queries to determine upfront which data is needed for answering them and use indexes and other physical design techniques to speed-up access to that data. However, for important classes of queries, e.g., HAVING and top-k queries, it is impossible to determine up-front what data is relevant. To overcome this limitation, we develop provenance-based data skipping (PBDS), a novel approach that generates provenance sketches to concisely encode what data is relevant for a query. Once a provenance sketch has been captured it is used to speed up subsequent queries. PBDS can exploit physical design artifacts such as indexes and zone maps. Our approach significantly improves performance for both disk-based and main-memory database systems.

قيم البحث

اقرأ أيضاً

Ontology-based data access (OBDA) is a popular paradigm for querying heterogeneous data sources by connecting them through mappings to an ontology. In OBDA, it is often difficult to reconstruct why a tuple occurs in the answer of a query. We address this challenge by enriching OBDA with provenance semirings, taking inspiration from database theory. In particular, we investigate the problems of (i) deciding whether a provenance annotated OBDA instance entails a provenance annotated conjunctive query, and (ii) computing a polynomial representing the provenance of a query entailed by a provenance annotated OBDA instance. Differently from pure databases, in our case these polynomials may be infinite. To regain finiteness, we consider idempotent semirings, and study the complexity in the case of DL-Lite ontologies. We implement Task (ii) in a state-of-the-art OBDA system and show the practical feasibility of the approach through an extensive evaluation against two popular benchmarks.
Data metrology -- the assessment of the quality of data -- particularly in scientific and industrial settings, has emerged as an important requirement for the UK National Physical Laboratory (NPL) and other national metrology institutes. Data provena nce and data curation are key components for emerging understanding of data metrology. However, to date provenance research has had limited visibility to or uptake in metrology. In this work, we summarize a scoping study carried out with NPL staff and industrial participants to understand their current and future needs for provenance, curation and data quality. We then survey provenance technology and standards that are relevant to metrology. We analyse the gaps between requirements and the current state of the art.
155 - Luc Moreau 2015
As users become confronted with a deluge of provenance data, dedicated techniques are required to make sense of this kind of information. We present Aggregation by Provenance Types, a provenance graph analysis that is capable of generating provenance graph summaries. It proceeds by converting provenance paths up to some length k to attributes, referred to as provenance types, and by grouping nodes that have the same provenance types. The summary also includes numeric values representing the frequency of nodes and edges in the original graph. A quantitative evaluation and a complexity analysis show that this technique is tractable; with small values of k, it can produce useful summaries and can help detect outliers. We illustrate how the generated summaries can further be used for conformance checking and visualization.
88 - James Cheney , Amal Ahmed , 2009
Provenance is information recording the source, derivation, or history of some information. Provenance tracking has been studied in a variety of settings; however, although many design points have been explored, the mathematical or semantic foundatio ns of data provenance have received comparatively little attention. In this paper, we argue that dependency analysis techniques familiar from program analysis and program slicing provide a formal foundation for forms of provenance that are intended to show how (part of) the output of a query depends on (parts of) its input. We introduce a semantic characterization of such dependency provenance, show that this form of provenance is not computable, and provide dynamic and static approximation techniques.
Scientific workflow systems increasingly store provenance information about the module executions used to produce a data item, as well as the parameter settings and intermediate data items passed between module executions. However, authors/owners of workflows may wish to keep some of this information confidential. In particular, a module may be proprietary, and users should not be able to infer its behavior by seeing mappings between all data inputs and outputs. The problem we address in this paper is the following: Given a workflow, abstractly modeled by a relation R, a privacy requirement Gamma and costs associated with data. The owner of the workflow decides which data (attributes) to hide, and provides the user with a view R which is the projection of R over attributes which have not been hidden. The goal is to minimize the cost of hidden data while guaranteeing that individual modules are Gamma -private. We call this the secureview problem. We formally define the problem, study its complexity, and offer algorithmic solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا