ﻻ يوجد ملخص باللغة العربية
A group topology is said to be linear if open subgroups form a base of neighborhoods of the identity element. It is proved that the existence of a nondiscrete extremally disconnected group of Ulam nonmeasurable cardinality with linear topology implies that of a nondiscrete extremally disconnected group of cardinality at most $2^omega$ with linear topology.
Given an arbitrary measurable cardinal $kappa$, a nondiscrete Hausdorff extremally disconnected topological group of cardinality $kappa$ is constructed.
It is proved that the existence of a countable extremally disconnected Boolean topological group containing a family of open subgroups whose intersection has empty interior implies the existence of a rapid ultrafilter.
It is proved that any countable topological group in which the filter of neighborhoods of the identity element is not rapid contains a discrete set with precisely one nonisolated point. This gives a negative answer to Protasovs question on the existe
Elementary band representations are the fundamental building blocks of atomic limit band structures. They have the defining property that at partial filling they cannot be both gapped and trivial. Here, we give two examples -- one each in a symmorphi
For a Tychonoff space $X$ and a subspace $Ysubsetmathbb R$, we study Baire category properties of the space $C_{downarrow F}(X,Y)$ of continuous functions from $X$ to $Y$, endowed with the Fell hypograph topology. We characterize pairs $X,Y$ for whic