ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement from tensor networks on a trapped-ion QCCD quantum computer

105   0   0.0 ( 0 )
 نشر من قبل Michael Foss-Feig
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability to selectively measure, initialize, and reuse qubits during a quantum circuit enables a mapping of the spatial structure of certain tensor-network states onto the dynamics of quantum circuits, thereby achieving dramatic resource savings when using a quantum computer to simulate many-body systems with limited entanglement. We experimentally demonstrate a significant benefit of this approach to quantum simulation: In addition to all correlation functions, the entanglement structure of an infinite system -- specifically the half-chain entanglement spectrum -- is conveniently encoded within a small register of bond qubits and can be extracted with relative ease. Using a trapped-ion QCCD quantum computer equipped with selective mid-circuit measurement and reset, we quantitatively determine the near-critical entanglement entropy of a correlated spin chain directly in the thermodynamic limit and show that its phase transition becomes quickly resolved upon expanding the bond-qubit register.

قيم البحث

اقرأ أيضاً

Quantum computers have the potential to efficiently simulate the dynamics of many interacting quantum particles, a classically intractable task of central importance to fields ranging from chemistry to high-energy physics. However, precision and memo ry limitations of existing hardware severely limit the size and complexity of models that can be simulated with conventional methods. Here, we demonstrate and benchmark a new scalable quantum simulation paradigm--holographic quantum dynamics simulation--which uses efficient quantum data compression afforded by quantum tensor networks along with opportunistic mid-circuit measurement and qubit reuse to simulate physical systems that have far more quantum degrees of freedom than can be captured by the available number of qubits. Using a Honeywell trapped ion quantum processor, we simulate the non-integrable (chaotic) dynamics of the self-dual kicked Ising model starting from an entangled state of $32$ spins using at most $9$ trapped ion qubits, obtaining excellent quantitative agreement when benchmarking against dynamics computed directly in the thermodynamic limit via recently developed exact analytical techniques. These results suggest that quantum tensor network methods, together with state-of-the-art quantum processor capabilities, enable a viable path to practical quantum advantage in the near term.
Fault-tolerant quantum error correction (QEC) is crucial for unlocking the true power of quantum computers. QEC codes use multiple physical qubits to encode a logical qubit, which is protected against errors at the physical qubit level. Here we use a trapped ion system to experimentally prepare $m$-qubit GHZ states and sample the measurement results to construct $mtimes m$ logical states of the $[[m^2,1,m]]$ Shor code, up to $m=7$. The synthetic logical fidelity shows how deeper encoding can compensate for additional gate errors in state preparation for larger logical states. However, the optimal code size depends on the physical error rate and we find that $m=5$ has the best performance in our system. We further realize the direct logical encoding of the $[[9,1,3]]$ Shor code on nine qubits in a thirteen-ion chain for comparison, with $98.8(1)%$ and $98.5(1)%$ fidelity for state $leftvertpmrightrangle_L$, respectively.
The availability of a universal quantum computer will have fundamental impact on a vast number of research fields and society as a whole. An increasingly large scientific and industrial community is working towards the realization of such a device. A n arbitrarily large quantum computer is best constructed using a modular approach. We present a blueprint for a trapped-ion based scalable quantum computer module which makes it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques and they are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength-radiation based quantum gate technology. To scale this microwave quantum computer architecture to an arbitrary size we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high-error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With only minor adjustments the proposed modules are also suitable for alternative trapped-ion quantum computer architectures, such as schemes using photonic interconnects.
Parallel operations in conventional computing have proven to be an essential tool for efficient and practical computation, and the story is not different for quantum computing. Indeed, there exists a large body of works that study advantages of paral lel implementations of quantum gates for efficient quantum circuit implementations. Here, we focus on the recently invented efficient, arbitrary, simultaneously entangling (EASE) gates, available on a trapped-ion quantum computer. Leveraging its flexibility in selecting arbitrary pairs of qubits to be coupled with any degrees of entanglement, all in parallel, we show a $n$-qubit Clifford circuit can be implemented using $6log(n)$ EASE gates, a $n$-qubit multiply-controlled NOT gate can be implemented using $3n/2$ EASE gates, and a $n$-qubit permutation can be implemented using six EASE gates. We discuss their implications to near-term quantum chemistry simulations and the state of the art pattern matching algorithm. Given Clifford + multiply-controlled NOT gates form a universal gate set for quantum computing, our results imply efficient quantum computation by EASE gates, in general.
Efficiently entangling pairs of qubits is essential to fully harness the power of quantum computing. Here, we devise an exact protocol that simultaneously entangles arbitrary pairs of qubits on a trapped-ion quantum computer. The protocol requires cl assical computational resources polynomial in the system size, and very little overhead in the quantum control compared to a single-pair case. We demonstrate an exponential improvement in both classical and quantum resources over the current state of the art. We implement the protocol on a software-defined trapped-ion quantum computer, where we reconfigure the quantum computer architecture on demand. Together with the all-to-all connectivity available in trapped-ion quantum computers, our results establish that trapped ions are a prime candidate for a scalable quantum computing platform with minimal quantum latency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا