ﻻ يوجد ملخص باللغة العربية
We discuss the minimal theory for quark-lepton unification at the low scale. In this context, the quarks and leptons are unified in the same representations and neutrino masses are generated through the inverse seesaw mechanism. The properties of the leptoquarks predicted in this theory are discussed in detail and we investigate the predictions for the leptonic and semi-leptonic decays of mesons. We study the possibility to explain the current value of $mathcal{R}_K$ reported by the LHCb collaboration and the value of the muon anomalous magnetic moment reported by the Muon $g-2$ experiment at Fermilab.
In the light of the recent result of the Muon g-2 experiment and the update on the test of lepton flavour universality $R_K$ published by the LHCb collaboration, we systematically build and discuss a set of models with minimal field content that can
We perform a phenomenological analysis of simplified models of light, feebly interacting particles (FIPs) that can provide a combined explanation of the anomalies in $bto s l^+ l ^-$ transitions at LHCb and the anomalous magnetic moment of the muon.
Data from the Muon g-2 experiment and measurements of the fine structure constant suggest that the anomalous magnetic moments of the muon and electron are at odds with standard model expectations. We survey the ability of axion-like-particles, two-Hi
We present a model of radiative neutrino masses which also resolves anomalies reported in $B$-meson decays, $R_{D^{(star)}}$ and $R_{K^{(star)}}$, as well as in muon $g-2$ measurement, $Delta a_mu$. Neutrino masses arise in the model through loop dia
According to the FNAL+BNL measurements for the muon $g-2$ and the Berkeley $^{133}$Cs measurement for the electron $g-2$, the SM prediction for the muon (electron) $g-2$ is $4.2sigma$ ($2.4sigma$) below (above) the experimental value. A joint explana