ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-torque induced wall motion in perpendicularly magnetized discs: ballistic versus oscillatory behavior

115   0   0.0 ( 0 )
 نشر من قبل Thibaut Devolder
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use time-resolved measurement and modeling to study the spin-torque induced motion of a domain wall in perpendicular anisotropy magnets. In disc of diameters between 70 and 100 nm, the wall drifts across the disc with pronounced back-and-forth oscillations that arise because the wall moves in the Walker regime. Several switching paths occur stochastically and lead to distinct switching durations. The wall can cross the disc center either in a ballistic manner or with variably marked oscillations before and after the crossing. The crossing of the center can even occur multiple times if a vertical Bloch line nucleates within the wall. The wall motion is analyzed using a collective coordinate model parametrized by the wall position $q$ and the tilt $phi$ of its in-plane magnetization projection. The dynamics results from the stretch field, which describes the affinity of the wall to reduce its length and the wall stiffness field describing the wall tendency to reduce dipolar energy by rotating its tilt. The wall oscillations result from the continuous exchange of energy between to the two degrees of freedom $q$ and $phi$. The stochasticity of the wall dynamics can be understood from the concept of the retention pond: a region in the $q-phi$ space in which walls are transiently bound to the disc center. Walls having trajectories close to the pond must circumvent it and therefore have longer propagation times. The retention pond disappears for a disc diameter of typically 40 nm: the wall then moves in a ballistic manner irrespective of the dynamics of its tilt. The propagation time is then robust against fluctuations hence reproducible.

قيم البحث

اقرأ أيضاً

Spin-orbit torque can drive electrical switching of magnetic layers. Here, we report that at least for micrometer-sized samples there is no simple correlation between the efficiency of dampinglike spin-orbit torque ({xi}_DL^j) and the critical switch ing current density of perpendicularly magnetized spin-current generator/ferromagnet heterostructures. We find that the values of {xi}_DL^j based on switching current densities can either under- or over-estimated {xi}_DL^j by up to tens of times in a domain-wall depinning analysis, while in the macrospin analysis based on the switching current density {xi}_DL^j can be overestimated by up to thousands of times. When comparing the relative strengths of {xi}_DL^j of spin-current generators, the critical switching current densities by themselves are a poor predictor.
We report on reversible electric-field-driven magnetic domain wall motion in a Cu/Ni multilayer on a ferroelectric BaTiO$_3$ substrate. In our heterostructure, strain-coupling to ferroelastic domains with in-plane and perpendicular polarization in th e BaTiO$_3$ substrate causes the formation of domains with perpendicular and in-plane magnetic anisotropy, respectively, in the Cu/Ni multilayer. Walls that separate magnetic domains are elastically pinned onto ferroelectric domain walls. Using magneto-optical Kerr effect microscopy, we demonstrate that out-of-plane electric field pulses across the BaTiO$_3$ substrate move the magnetic and ferroelectric domain walls in unison. Our experiments indicate an exponential increase of domain wall velocity with electric field strength and opposite domain wall motion for positive and negative field pulses. Magnetic fields do not affect the velocity of magnetic domain walls, but independently tailor their internal spin structure, causing a change in domain wall dynamics at high velocities.
Deterministic magnetization switching using spin-orbit torque (SOT) has recently emerged as an efficient means to electrically control the magnetic state of ultrathin magnets. The SOT switching still lacks in oscillatory switching characteristics ove r time, therefore, it is limited to bipolar operation where a change in polarity of the applied current or field is required for bistable switching. The coherent rotation based oscillatory switching schemes cannot be applied to SOT because the SOT switching occurs through expansion of magnetic domains. Here, we experimentally achieve oscillatory switching in incoherent SOT process by controlling domain wall dynamics. We find that a large field-like component can dynamically influence the domain wall chirality which determines the direction of SOT switching. Consequently, under nanosecond current pulses, the magnetization switches alternatively between the two stable states. By utilizing this oscillatory switching behavior we demonstrate a unipolar deterministic SOT switching scheme by controlling the current pulse duration.
The oscillation properties of a spin torque oscillator consisting of a perpendicularly magnetized free layer and an in-plane magnetized pinned layer are studied based on an analysis of the energy balance between spin torque and damping. The critical value of an external magnetic field applied normal to the film plane is found, below which the controllable range of the oscillation frequency by the current is suppressed. The value of the critical field depends on the magnetic anisotropy, the saturation magnetization, and the spin torque parameter.
The demand of fast and power efficient spintronics devices with flexibility requires additional energy for magnetization manipulation. Stress/and strain have shown their potentials for tuning magnetic properties to the desired level. Here, we report a systematic study for the effect of both tensile and compressive stresses on the magnetic anisotropy (MA). Further the effect of stress on the domain structure and magnetization relaxation mechanism in a perpendicularly magnetized Co/Pt film has been studied. It is observed that a minimal in-plane tensile strain has increased the coercivity of the film by 38$%$ of its initial value, while a very small change of coercivity has been found under compressive strain. The size of ferromagnetic domains decreases under tensile strain, while no change is observed under the compressive strain. Magnetization relxation measured at sub-coercive fields yields longer relaxation time in the strained state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا