ترغب بنشر مسار تعليمي؟ اضغط هنا

ds-array: A Distributed Data Structure for Large Scale Machine Learning

72   0   0.0 ( 0 )
 نشر من قبل Javier \\'Alvarez Cid-Fuentes
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine learning has proved to be a useful tool for extracting knowledge from scientific data in numerous research fields, including astrophysics, genomics, and molecular dynamics. Often, data sets from these research areas need to be processed in distributed platforms due to their magnitude. This can be done using one of the various distributed machine learning libraries available. One of these libraries is dislib, a distributed machine learning library for Python especially designed to process large scale data sets on HPC clusters, which makes dislib an ideal candidate for analyzing scientific data. However, dislibs main distributed data structure, called Dataset, has some limitations, including poor performance in certain operations and low flexibility and usability. In this paper, we propose a novel distributed data structure for dislib, called ds-array, that addresses dislibs main limitations in data management. Ds-arrays simplify distributed data management in dislib by exposing a NumPy-like API, provide more flexibility, and reduce the computational complexity of some operations. This results in performance improvements of up to two orders of magnitude over Datasets, while also greatly improving scalability and usability.

قيم البحث

اقرأ أيضاً

TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. TensorFlow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous parameter server designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with particularly strong support for training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model in contrast to existing systems, and demonstrate the compelling performance that TensorFlow achieves for several real-world applications.
A major driver behind the success of modern machine learning algorithms has been their ability to process ever-larger amounts of data. As a result, the use of distributed systems in both research and production has become increasingly prevalent as a means to scale to this growing data. At the same time, however, distributing the learning process can drastically complicate the implementation of even simple algorithms. This is especially problematic as many machine learning practitioners are not well-versed in the design of distributed systems, let alone those that have complicated communication topologies. In this work we introduce Launchpad, a programming model that simplifies the process of defining and launching distributed systems that is specifically tailored towards a machine learning audience. We describe our framework, its design philosophy and implementation, and give a number of examples of common learning algorithms whose designs are greatly simplified by this approach.
364 - Ji Liu , Jizhou Huang , Yang Zhou 2021
In recent years, data and computing resources are typically distributed in the devices of end users, various regions or organizations. Because of laws or regulations, the distributed data and computing resources cannot be directly shared among differ ent regions or organizations for machine learning tasks. Federated learning emerges as an efficient approach to exploit distributed data and computing resources, so as to collaboratively train machine learning models, while obeying the laws and regulations and ensuring data security and data privacy. In this paper, we provide a comprehensive survey of existing works for federated learning. We propose a functional architecture of federated learning systems and a taxonomy of related techniques. Furthermore, we present the distributed training, data communication, and security of FL systems. Finally, we analyze their limitations and propose future research directions.
109 - Malte S. Kurz 2021
This paper explores serverless cloud computing for double machine learning. Being based on repeated cross-fitting, double machine learning is particularly well suited to exploit the high level of parallelism achievable with serverless computing. It a llows to get fast on-demand estimations without additional cloud maintenance effort. We provide a prototype Python implementation texttt{DoubleML-Serverless} for the estimation of double machine learning models with the serverless computing platform AWS Lambda and demonstrate its utility with a case study analyzing estimation times and costs.
Scale of data and scale of computation infrastructures together enable the current deep learning renaissance. However, training large-scale deep architectures demands both algorithmic improvement and careful system configuration. In this paper, we fo cus on employing the system approach to speed up large-scale training. Via lessons learned from our routine benchmarking effort, we first identify bottlenecks and overheads that hinter data parallelism. We then devise guidelines that help practitioners to configure an effective system and fine-tune parameters to achieve desired speedup. Specifically, we develop a procedure for setting minibatch size and choosing computation algorithms. We also derive lemmas for determining the quantity of key components such as the number of GPUs and parameter servers. Experiments and examples show that these guidelines help effectively speed up large-scale deep learning training.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا