ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining Mixed Dark-Matter Scenarios of WIMPs and Primordial Black Holes from CMB and 21-cm observations

66   0   0.0 ( 0 )
 نشر من قبل Hiroyuki Tashiro
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the dark matter (DM) scenarios consisting of the mixture of WIMPs and PBHs and study how much fraction of the total DM can be PBHs. In such scenarios, PBHs can accrete the WIMPs and consequently enhance the heating and ionization in the intergalactic medium due to WIMP annihilations. We demonstrate that the CMB data can give the stringent bounds on the allowed PBH fraction which are comparable or even tighter than those from the gamma ray data depending on the DM masses. For instance, the MCMC likelihood analysis using the Planck CMB data leads to the bound on PBH DM fraction with respect to the total dark matter $f_{rm PBH} lesssim {cal O}( 10^{-10}sim 10^{-8})$ for the WIMP mass $m_{chi}sim {cal O}(10sim 10^3)$ GeV with the conventional DM annihilation cross section $langle sigma v rangle=3 times 10^{-26}~rm cm^3/s $. We also investigate the feasibility of the global 21-cm signal measurement to provide the stringent constraints on the PBH fraction.

قيم البحث

اقرأ أيضاً

79 - Shikhar Mittal 2021
Using the global 21-cm signal measurement by the EDGES collaboration, we derive constraints on the fraction of the dark matter that is in the form of primordial black holes (PBHs) with masses in the range $10^{15}$-$10^{17},$g. Improving upon previou s analyses, we consider the effect of the X-ray heating of the intergalactic medium on these constraints, and also use the full shape of the 21-cm absorption feature in our inference. In order to account for the anomalously deep absorption amplitude, we also consider an excess radio background motivated by LWA1 and ARCADE2 observations. Because the heating rate induced by PBH evaporation evolves slowly, the data favour a scenario in which PBH-induced heating is accompanied by X-ray heating. Also, for the same reason, using the full measurement across the EDGES observation band yields much stronger constraints on PBHs than just the redshift of absorption. We find that 21-cm observations exclude $f_{mathrm{PBH}} gtrsim 10^{-9.7}$ at 95% CL for $M_{mathrm{PBH}}=10^{15},$g. This limit weakens approximately as $M_{mathrm{PBH}}^4$ towards higher masses, thus providing the strongest constraints on ultralight evaporating PBHs as dark matter over the entire mass range $10^{15}$-$10^{17},$g. Under the assumption of a simple spherical gravitational collapse based on the Press-Schechter formalism, we also derive bounds on the curvature power spectrum at extremely small scales ($ksim 10^{15},$Mpc$^{-1}$). This highlights the usefulness of global 21-cm measurements, including non-detections, across wide frequency bands for probing exotic physical processes.
We study the dynamics of a spectator Higgs field which stochastically evolves during inflation onto near-critical trajectories on the edge of a runaway instability. We show that its fluctuations do not produce primordial black holes (PBHs) in suffici ent abundance to be the dark matter, nor do they produce significant second-order gravitational waves. First we show that the Higgs produces larger fluctuations on CMB scales than on PBH scales, itself a no-go for a viable PBH scenario. Then we track the superhorizon perturbations nonlinearly through reheating using the delta N formalism to show that they are not converted to large curvature fluctuations. Our conclusions hold regardless of any fine-tuning of the Higgs field for both the Standard Model Higgs and for Higgs potentials modified to prevent unbounded runaway.
The NANOGrav Collaboration has recently published a strong evidence for a stochastic common-spectrum process that may be interpreted as a stochastic gravitational wave background. We show that such a signal can be explained by second-order gravitatio nal waves produced during the formation of primordial black holes from the collapse of sizeable scalar perturbations generated during inflation. This possibility has two predictions: $i$) the primordial black holes may comprise the totality of the dark matter with the dominant contribution to their mass function falling in the range $(10^{-15}div 10^{-11}) M_odot$ and $ii$) the gravitational wave stochastic background will be seen as well by the LISA experiment.
Although the dark matter is usually assumed to be some form of elementary particle, primordial black holes (PBHs) could also provide some of it. However, various constraints restrict the possible mass windows to $10^{16}$ - $10^{17},$g, $10^{20}$ - $ 10^{24},$g and $10$ - $10^{3},M_{odot}$. The last possibility is contentious but of special interest in view of the recent detection of black-hole mergers by LIGO/Virgo. PBHs might have important consequences and resolve various cosmological conundra even if they have only a small fraction of the dark-matter density. In particular, those larger than $10^{3},M_{odot}$ could generate cosmological structures through the seed or Poisson effect, thereby alleviating some problems associated with the standard cold dark-matter scenario, and sufficiently large PBHs might provide seeds for the supermassive black holes in galactic nuclei. More exotically, the Planck-mass relics of PBH evaporations or stupendously large black holes bigger than $10^{12},M_{odot}$ could provide an interesting dark component.
If primordial black holes (PBHs) formed at the quark-hadron epoch, their mass must be close to the Chandrasekhar limit, this also being the characteristic mass of stars. If they provide the dark matter (DM), the collapse fraction must be of order the cosmological baryon-to-photon ratio $sim 10^{-9}$, which suggests a scenario in which a baryon asymmetry is produced efficiently in the outgoing shock around each PBH and then propagates to the rest of the Universe. We suggest that the temperature increase in the shock provides the ingredients for hot spot electroweak baryogenesis. This also explains why baryons and DM have comparable densities, the precise ratio depending on the size of the PBH relative to the cosmological horizon at formation. The observed value of the collapse fraction and baryon asymmetry depends on the amplitude of the curvature fluctuations which generate the PBHs and may be explained by an anthropic selection effect associated with the existence of galaxies. We propose a scenario in which the quantum fluctuations of a light stochastic spectator field during inflation generate large curvature fluctuations in some regions, with the stochasticity of this field providing the basis for the required selection. Finally, we identify several observational predictions of our scenario that should be testable within the next few years. In particular, the PBH mass function could extend to sufficiently high masses to explain the black hole coalescences observed by LIGO/Virgo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا