ﻻ يوجد ملخص باللغة العربية
We consider the dark matter (DM) scenarios consisting of the mixture of WIMPs and PBHs and study how much fraction of the total DM can be PBHs. In such scenarios, PBHs can accrete the WIMPs and consequently enhance the heating and ionization in the intergalactic medium due to WIMP annihilations. We demonstrate that the CMB data can give the stringent bounds on the allowed PBH fraction which are comparable or even tighter than those from the gamma ray data depending on the DM masses. For instance, the MCMC likelihood analysis using the Planck CMB data leads to the bound on PBH DM fraction with respect to the total dark matter $f_{rm PBH} lesssim {cal O}( 10^{-10}sim 10^{-8})$ for the WIMP mass $m_{chi}sim {cal O}(10sim 10^3)$ GeV with the conventional DM annihilation cross section $langle sigma v rangle=3 times 10^{-26}~rm cm^3/s $. We also investigate the feasibility of the global 21-cm signal measurement to provide the stringent constraints on the PBH fraction.
Using the global 21-cm signal measurement by the EDGES collaboration, we derive constraints on the fraction of the dark matter that is in the form of primordial black holes (PBHs) with masses in the range $10^{15}$-$10^{17},$g. Improving upon previou
We study the dynamics of a spectator Higgs field which stochastically evolves during inflation onto near-critical trajectories on the edge of a runaway instability. We show that its fluctuations do not produce primordial black holes (PBHs) in suffici
The NANOGrav Collaboration has recently published a strong evidence for a stochastic common-spectrum process that may be interpreted as a stochastic gravitational wave background. We show that such a signal can be explained by second-order gravitatio
Although the dark matter is usually assumed to be some form of elementary particle, primordial black holes (PBHs) could also provide some of it. However, various constraints restrict the possible mass windows to $10^{16}$ - $10^{17},$g, $10^{20}$ - $
If primordial black holes (PBHs) formed at the quark-hadron epoch, their mass must be close to the Chandrasekhar limit, this also being the characteristic mass of stars. If they provide the dark matter (DM), the collapse fraction must be of order the