ﻻ يوجد ملخص باللغة العربية
Nonlinear photoionization of dielectrics and semiconductors is widely treated in the frames of the Keldysh theory whose validity is limited to small photon energies compared to the band gap and relatively low laser intensities. The time-dependent density functional theory (TDDFT) simulations, which are free of these limitations, enable to gain insight into non-equilibrium dynamics of the electronic structure. Here we apply the TDDFT to investigate photoionization of silicon crystal by ultrashort laser pulses in a wide range of laser wavelengths and intensities and compare the results with predictions of the Keldysh theory. Photoionization rates derived from the simulations considerably exceed the data obtained with the Keldysh theory within the validity range of the latter. Possible reasons of the discrepancy are discussed and we provide fundamental data on the photoionization rates beyond the limits of the Keldysh theory. By investigating the features of the Stark shift as a function of photon energy and laser field strength, a manifestation of the transient Wannier-Stark ladder states have been revealed which become blurred with increasing laser field strength. Finally, it is shown that the TDDFT simulations can potentially provide reliable data on the electron damping time that is of high importance for large-scale modeling.
We study numerically the linear optical response of a quasiparticle moving on a one-dimensional disordered lattice in the presence of a linear bias. The random site potential is assumed to be long-range-correlated with a power-law spectral density $S
We provide a nonperturbative theory for photoionization of transparent solids. By applying a particular steepest-descent method, we derive analytical expressions for the photoionization rate within the two-band structure model, which consistently acc
In this paper we consider stationary solutions to the nonlinear one-dimensional Schroedinger equation with a periodic potential and a Stark-type perturbation. In the limit of large periodic potential the Stark-Wannier ladders of the linear equation b
First-principle study of bismuth-related oxygen-deficient centers ($=$Bi$cdots$Ge$equiv$, $=$Bi$cdots$Si$equiv$, and $=$Bi$cdots$Bi$=$ oxygen vacancies) in Bi$_2$O$_3$-GeO$_2$, Bi$_2$O$_3$-SiO$_2$, Bi$_2$O$_3$-Al$_2$O$_3$-GeO$_2$, and Bi$_2$O$_3$-Al$
We report the numerical and experimental study of elastic Wannier-Stark Ladders and Bloch Oscillations in a tunable one-dimensional granular chain consisting of cylindrical particles. The Wannier-Stark Ladders are obtained by tuning the contact angle