ﻻ يوجد ملخص باللغة العربية
We present in this communication a new solving procedure for Kelvin&Kirchhoff equations, considering the dynamics of falling the rigid rotating torus in an ideal incompressible fluid, assuming additionally the dynamical symmetry of rotation for the rotating body, I_1 = I_2. Fundamental law of angular momentum conservation is used for the aforementioned solving procedure. The system of Euler equations for dynamics of torus rotation is explored in regard to the existence of an analytic way of presentation for the approximated solution (where we consider the case of laminar flow at slow regime of torus rotation). The second finding is associated with the fact that the Stokes boundary layer phenomenon on the boundaries of the torus is also been assumed at formulation of basic Kelvin&Kirchhoff equations (for which analytical expressions for the components of fluid torque vector {T_2, T_3} were obtained earlier). The results of calculations for the components of angular velocity should then be used for full solving the momentum equation of Kelvin&Kirchhoff system. Trajectories of motion can be divided into, preferably, 3 classes: zigzagging, helical spiral motion, and the chaotic regime of oscillations.
In this paper, we present a new approach for solving Laplace tidal equations (LTE) which was formulated first in [S.V.Ershkov, A Riccati-type solution of Euler-Poisson equations of rigid body rotation over the fixed point, Acta Mechanica, 228(7), 271
An obstacle to the development of direct action version of electromagnetism was that in the end it failed to fulfill its initial promise of avoiding the problem of infinite Coulomb self-energy in the Maxwell theory of the classical point charge. This
The main objective for this research was the analytical exploration of the dynamics of planar satellite rotation during the motion of an elliptical orbit around a planet. First, we revisit the results of J. Wisdom et al. (1984), in which, by the eleg
In this paper, we proceed to develop a new approach which was formulated first in Ershkov (2017) for solving Poisson equations: a new type of the solving procedure for Euler-Poisson equations (rigid body rotation over the fixed point) is suggested in
In this paper, we provide a procedure to solve the eigen solutions of Dirac equation with complicated potential approximately. At first, we solve the eigen solutions of a linear Dirac equation with complete eigen system, which approximately equals to