ترغب بنشر مسار تعليمي؟ اضغط هنا

Tidal deformability of strange stars and the GW170817 event

71   0   0.0 ( 0 )
 نشر من قبل Odilon Louren\\c{c}o
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we consider strange stars formed by quark matter in the color-flavor-locked (CFL) phase of color superconductivity. The CFL phase is described by a Nambu-Jona-Lasinio model with four-fermion vector and diquark interaction channels. The effect of the color superconducting medium on the gluons are incorporated into the model by including the gluon self-energy in the thermodynamic potential. We construct parametrizations of the model by varying the vector coupling $G_V$ and comparing the results to the data on tidal deformability from the GW170817 event, the observational data on maximum masses from massive pulsars such as the MSP J0740+6620, and the mass/radius fits to NICER data for PSR J003+0451. Our results points out to windows for the $G_V$ parameter space of the model, with and without gluon effects included, that are compatible with all these astrophysical constraints, namely, $0.21<G_V/G_S<0.4$, and $0.02<G_V/G_S<0.1$, respectively. We also observe a strong correlation between the tidal deformabilites of the GW170817 event and $G_V$. Our results indicate that strange stars cannot be ruled out in collisions of compact binaries from the structural point of view.

قيم البحث

اقرأ أيضاً

Strange quark matter, which is composed of u, d, and s quarks, could be the true ground of matter. According to this hypothesis, compact stars may actually be strange quark stars, and there may even be stable strange quark dwarfs and strange quark pl anets. The detection of the binary neutron star merger event GW170817 provides us new clues on the equation of state of compact stars. In this study, the tidal deformability of strange quark planets and strange quark dwarfs are calculated. It is found that the tidal deformability of strange quark objects is smaller than that of normal matter counterparts. For a typical 0.6 M$_odot$ compact star, the tidal deformability of a strange dwarf is about 1.4 times less than that of a normal white dwarf. The difference is even more significant between strange quark planets and normal matter planets. Additionally, if the strange quark planet is a bare one (i.e., not covered by a normal matter curst), the tidal deformability will be extremely small, which means bare strange quark planets will hardly be distorted by tidal forces. Our study clearly proves the effectiveness of identifying strange quark objects via searching for strange quark planets through gravitational-wave observations.
We compute the tidal deformabilities for neutron star merger for equations of state with a strong first order phase transition producing a new separate branch in the mass-radius diagram. A case is found where all three possible pairs of combinations between these two neutron star branches are present for the total mass of $M=2.7M_odot$ of the observed merger event GW170817. It is demonstrated that the plot of the two tidal deformabilities $Lambda_1$ and $Lambda_2$ of the binary neutron star can show up to three separate branches. We propose that the future detections of neutron star merger events with the same value for $Lambda_1$ but different values of $Lambda_2$ serve as a signal for the existence of a strong first order phase transition in neutron star matter.
The sound velocity $v_s$ and dimensionless tidal deformability $Lambda$ are analyzed using the pseudo-conformal model we developed before. In contrast to the conclusion obtained in the previous works in the literature, our model with the upper bound of the sound velocity $v_s = 1/sqrt{3}$, the so-called conformal sound velocity, set in at a { density relevant to compact stars} $gsim 2 n_0$ where $n_0$ is the normal nuclear matter density, can accommodate {it all} presently established nuclear matter and compact-star properties including the maximum star-mass constraint $ simeq 2.3 M_odot$. This observation is associated with a possible emergence of pseudoconformal structure in compact star matter---in which the trace of energy-momentum tensor is a nearly density-independent nonzero constant---brought in by a topology change at $2.0 lesssim n_{1/2}/n_0 lesssim 4.0$ commensurate with a possible change of degrees of freedom from hadrons.
We use gravitational-wave observations of the binary neutron star merger GW170817 to explore the tidal deformabilities and radii of neutron stars. We perform Bayesian parameter estimation with the source location and distance informed by electromagne tic observations. We also assume that the two stars have the same equation of state; we demonstrate that for stars with masses comparable to the component masses of GW170817, this is effectively implemented by assuming that the stars dimensionless tidal deformabilities are determined by the binarys mass ratio $q$ by $Lambda_1/Lambda_2 = q^6$. We investigate different choices of prior on the component masses of the neutron stars. We find that the tidal deformability and 90$%$ credible interval is $tilde{Lambda}=222^{+420}_{-138}$ for a uniform component mass prior, $tilde{Lambda}=245^{+453}_{-151}$ for a component mass prior informed by radio observations of Galactic double neutron stars, and $tilde{Lambda}=233^{+448}_{-144}$ for a component mass prior informed by radio pulsars. We find a robust measurement of the common areal radius of the neutron stars across all mass priors of $8.9 le hat{R} le 13.2$ km, with a mean value of $langle hat{R} rangle = 10.8$ km. Our results are the first measurement of tidal deformability with a physical constraint on the stars equation of state and place the first lower bounds on the deformability and areal radii of neutron stars using gravitational waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا