ﻻ يوجد ملخص باللغة العربية
Emotion-cause pair extraction (ECPE), an emerging task in sentiment analysis, aims at extracting pairs of emotions and their corresponding causes in documents. This is a more challenging problem than emotion cause extraction (ECE), since it requires no emotion signals which are demonstrated as an important role in the ECE task. Existing work follows a two-stage pipeline which identifies emotions and causes at the first step and pairs them at the second step. However, error propagation across steps and pair combining without contextual information limits the effectiveness. Therefore, we propose a Dual-Questioning Attention Network to alleviate these limitations. Specifically, we question candidate emotions and causes to the context independently through attention networks for a contextual and semantical answer. Also, we explore how weighted loss functions in controlling error propagation between steps. Empirical results show that our method performs better than baselines in terms of multiple evaluation metrics. The source code can be obtained at https://github.com/QixuanSun/DQAN.
The task of Emotion-Cause Pair Extraction (ECPE) aims to extract all potential clause-pairs of emotions and their corresponding causes in a document. Unlike the more well-studied task of Emotion Cause Extraction (ECE), ECPE does not require the emoti
The Emotion Cause Extraction (ECE)} task aims to identify clauses which contain emotion-evoking information for a particular emotion expressed in text. We observe that a widely-used ECE dataset exhibits a bias that the majority of annotated cause cla
Detecting what emotions are expressed in text is a well-studied problem in natural language processing. However, research on finer grained emotion analysis such as what causes an emotion is still in its infancy. We present solutions that tackle both
We address the problem of recognizing emotion cause in conversations, define two novel sub-tasks of this problem, and provide a corresponding dialogue-level dataset, along with strong Transformer-based baselines. The dataset is available at https://g
While recent progress has significantly boosted few-shot classification (FSC) performance, few-shot object detection (FSOD) remains challenging for modern learning systems. Existing FSOD systems follow FSC approaches, ignoring critical issues such as