ﻻ يوجد ملخص باللغة العربية
The current role of data-driven science is constantly increasing its importance within Astrophysics, due to the huge amount of multi-wavelength data collected every day, characterized by complex and high-volume information requiring efficient and as much as possible automated exploration tools. Furthermore, to accomplish main and legacy science objectives of future or incoming large and deep survey projects, such as JWST, LSST and Euclid, a crucial role is played by an accurate estimation of photometric redshifts, whose knowledge would permit the detection and analysis of extended and peculiar sources by disentangling low-z from high-z sources and would contribute to solve the modern cosmological discrepancies. The recent photometric redshift data challenges, organized within several survey projects, like LSST and Euclid, pushed the exploitation of multi-wavelength and multi-dimensional data observed or ad hoc simulated to improve and optimize the photometric redshifts prediction and statistical characterization based on both SED template fitting and machine learning methodologies. But they also provided a new impetus in the investigation on hybrid and deep learning techniques, aimed at conjugating the positive peculiarities of different methodologies, thus optimizing the estimation accuracy and maximizing the photometric range coverage, particularly important in the high-z regime, where the spectroscopic ground truth is poorly available. In such a context we summarize what learned and proposed in more than a decade of research.
Astronomy has entered the big data era and Machine Learning based methods have found widespread use in a large variety of astronomical applications. This is demonstrated by the recent huge increase in the number of publications making use of this new
Photometric redshifts (photo-zs) provide an alternative way to estimate the distances of large samples of galaxies and are therefore crucial to a large variety of cosmological problems. Among the various methods proposed over the years, supervised ma
We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based o
We estimated photometric redshifts (zphot) for more than 1.1 million galaxies of the ESO Public Kilo-Degree Survey (KiDS) Data Release 2. KiDS is an optical wide-field imaging survey carried out with the VLT Survey Telescope (VST) and the OmegaCAM ca
A variety of fundamental astrophysical science topics require the determination of very accurate photometric redshifts (photo-zs). A wide plethora of methods have been developed, based either on template models fitting or on empirical explorations of