ﻻ يوجد ملخص باللغة العربية
CsV$_3$Sb$_5$ is a newly discovered Kagome superconductor that attracts great interest due to its topological nontrivial band structure and the coexistence of superconductivity and charge-density-wave (CDW) with many exotic properties. Here, we report the detailed characterization of the CDW gap in high-quality CsV$_3$Sb$_5$ single crystals using high-resolution angle-resolved photoemission spectroscopy. We find that the CDW gap is strongly momentum dependent. While gapped around the $M$ point, the electronic states remain gapless around the $Gamma$ point and along the $Gamma$-$K$ direction. Such momentum dependence indicates that the CDW is driven by the scattering of electrons between neighboring $M$ points, where the band structure hosts multiple saddle points and the density of state diverges near the Fermi level. Our observations of the partially gapped Fermi surface and strongly momentum-dependent CDW gap not only provide a foundation for uncovering the mechanism of CDW in CsV$_3$Sb$_5$, but also shed light on the understanding of how the CDW coexists with superconductivity in this topological Kagome superconductor.
Using first-principles calculations, we identify the origin of the observed charge density wave (CDW) formation in a layered kagome metal CsV$_3$Sb$_5$. It is revealed that the structural distortion of kagome lattice forming the trimeric and hexameri
Recently, kagome lattice metal AV$_3$Sb$_5$ (A = K, Rb, Cs) family has received wide attention due to its presence of superconductivity, charge density wave (CDW) and peculiar properties from topological nontrivial electronic structure. With time-res
$A$V$_3$Sb$_5$ ($A$ = K, Rb, Cs) is a novel kagome superconductor coexisting with the charge density wave (CDW) order. Identifying the structure of the CDW order is crucial for understanding the exotic normal state and superconductivity in this syste
The Kagome superconductors AV$_3$Sb$_5$ (A=K, Rb, Cs) have received enormous attention due to their nontrivial topological electronic structure, anomalous physical properties and superconductivity. Unconventional charge density wave (CDW) has been de
I search for the ground state structures of the kagome metals KV$_3$Sb$_5$, RbV$_3$Sb$_5$, and CsV$_3$Sb$_5$ using first principles calculations. Group-theoretical analysis shows that there are seventeen different distortions that are possible due to