ﻻ يوجد ملخص باللغة العربية
Emission metrics, a crucial tool in setting effective equivalences between greenhouse gases, currently require a subjective, arbitrary choice of time horizon. Here, we propose a novel framework that uses a specific temperature goal to calculate the time horizon that aligns with scenarios satisfying that temperature goal. We analyze the Intergovernmental Panel on Climate Change Special Report on Global Warming of 1.5 C Scenario Database 1 to find that justified time horizons for the 1.5 C and 2 C global warming goals of the Paris Agreement are 22 +/- 1 and 55 +/- 1 years respectively. We then use these time horizons to quantify time-dependent emission metrics. Using methane as an example, we find that emission metrics that align with the 1.5 C and 2 C warming goals respectively (using their associated time horizons) are 80 +/- 1 and 45 +/- 1 for the Global Warming Potential, 62 +/- 1 and 11 +/- 1 for the Global Temperature change Potential, and 89 +/- 1 and 50 +/- 1 for the integrated Global Temperature change Potential. Using the most commonly used time horizon, 100 years, results in underestimating methane emission metrics by 40-70% relative to the values we calculate that align with the 2 C goal.
In the analysis of empirical signals, detecting correlations that capture genuine interactions between the elements of a complex system is a challenging task with applications across disciplines. Here we analyze a global data set of surface air tempe
Different definitions of links in climate networks may lead to considerably different network topologies. We construct a network from climate records of surface level atmospheric temperature in different geographical sites around the globe using two
Errors in applying regression models and wavelet filters used to analyze geophysical signals are discussed: (1) multidecadal natural oscillations (e.g. the quasi 60-year Atlantic Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO) and Pa
We construct and analyze climate networks based on daily satellite measurements of temperatures and geopotential heights. We show that these networks are stable during time and are similar over different altitudes. Each link in our network is stable
In high frequency financial data not only returns but also waiting times between trades are random variables. In this work, we analyze the spectra of the waiting-time processes for tick-by-tick trades. The numerical problem, strictly related with the